9.在则以A.B为焦点且过点C的椭圆的离心率等于 查看更多

 

题目列表(包括答案和解析)

在△ABC中,AB=2BC,∠ABC=120°,则以A、B为焦点且过点C的椭圆的离心率等于(  )
A.
1
4
B.
1
2
C.
3
-1
D.
7
-1
3

查看答案和解析>>

在△ABC中,AB=2BC,∠ABC=120°,则以A、B为焦点且过点C的椭圆的离心率等于( )
A.
B.
C.-1
D.

查看答案和解析>>

在△ABC中,AB=2BC,∠ABC=120°,则以A、B为焦点且过点C的椭圆的离心率等于( )
A.
B.
C.-1
D.

查看答案和解析>>

在△ABC中,AB=2BC,∠ABC=120°,则以A、B为焦点且过点C的椭圆的离心率等于


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式-1
  4. D.
    数学公式

查看答案和解析>>

在△ABC中,∠ACB=60°,sinA∶sinB=8∶5,则以A、B为焦点且过点C的椭圆的离心率为________.

查看答案和解析>>

 

一、选择题:本大题共12小题,每小题5分,共60分。

1―6ACAABB   7―12DCDACD

二、填空题:本大题共4小题,每小题5分,共20分。

13.60°  14.40  15.    16.6

20090411

17.(本小题满分10分)

   (I)解:因为

       由正弦定理得

       所以

       又

       故   5分

   (II)由

       故

          10分

18.(本小题满分12分)

   (I)解:设等差数列

       由成等比数列,

       得

       即

       得(舍去)。

       故

       所以   6分

   (II)又

       则

       又

       故的等差数列。

       所以   12分

19.(本小题满分12分)

       解:设事件

       则

   (I)设“赛完两局比赛结束”为事件C,则

       则

       即

      

       因为

       所以

       因为   6分

   (II)设“赛完四局比赛结束且乙比甲多2分”为事件D,

       则

       即

      

      

       =     12分

20.(本小题满分12分)

   (I)证明:

          2分

       又

   (II)方法一

       解:过O作

      

       则O1是ABC截面圆的圆心,且BC是直径,

       过O作于M,则M为PA的中点,

       连结O1A,则四边形MAO1O为矩形,

          8分

       过O作于E,连EO1­,

       则为二面角O―AC―B的平面角   10分

       在

      

       在

       所以二面角O―AC―B的大小为   12分

       方法二

       同上,   8分

      

      

      

       设面OAC的法向量为

      

       得

       故

       所以二面角O―AC―B的大小为   12分

 

 

21.(本小题满分12分)

   (I)解:当

       故   1分

       因为   当

       当

       故上单调递减。   5分

   (II)解:由题意知上恒成立,

       即上恒成立。   7分

       令

       因为   9分       

       故上恒成立等价于

          11分

       解得   12分

22.(本小题满分12分)

       解:依题意设抛物线方程为

       直线

       则的方程为

      

       因为

       即

       故

   (I)若

      

       故点B的坐标为

       所以直线   5分

   (II)联立

      

       则

       又   7分

       故   9分

       因为成等差数列,

       所以

       故

       将代入上式得

       。   12分

 

 

 

 

 


同步练习册答案