已知抛物线的顶点在坐标原点O.焦点F在x正半轴上.倾斜角为锐角的直线过F点.设直线与抛物线交于A.B两点.与抛物线的准线交于M点. 查看更多

 

题目列表(包括答案和解析)

已知抛物线的顶点在坐标原点O,焦点F在x轴正半轴上,倾斜角为锐角的直线l过F点,设直线l与抛物线交于A、B两点,与抛物线的准线交于M点,
MF
FB
(λ>0)
(1)若λ=1,求直线l斜率
(2)若点A、B在x轴上的射影分别为A1,B1且|
B1F
|,|
OF
|,2|
A1F
|成等差数列求λ的值
(3)设已知抛物线为C1:y2=x,将其绕顶点按逆时针方向旋转90°变成C1′.圆C2:x2+(y-4)2=1的圆心为点N.已知点P是抛物线C1′上一点(异于原点),过点P作圆C2的两条切线,交抛物线C′1于T,S,两点,若过N,P两点的直线l垂直于TS,求直线l的方程.

查看答案和解析>>

已知抛物线的顶点在坐标原点O,焦点F在x正半轴上,倾斜角为锐角的直线过F点。设直线与抛物线交于A、B两点,与抛物线的准线交于M点,

   (I)若,求直线的斜率;

   (II)若点A、B在x轴上的射影分别为A1、B1,且成等差数列,求的值。

 

 

查看答案和解析>>

已知抛物线的顶点在坐标原点O,焦点F在x正半轴上,倾斜角为锐角的直线l过F点.设直线l与抛物线交于A、B两点,与抛物线的准线交于M点,
MF
FB
,其中λ>0
(I)若λ=1,求直线l的斜率;
(II)若点A、B在x轴上的射影分别为A1、B1,且|
B1F
|,|
OF
|,2|
A1F
|成等差数列,求λ的值.

查看答案和解析>>

已知抛物线的顶点在坐标原点O,焦点F在x轴正半轴上,倾斜角为锐角的直线l过F点,设直线l与抛物线交于A、B两点,与抛物线的准线交于M点,(λ>0)
(1)若λ=1,求直线l斜率
(2)若点A、B在x轴上的射影分别为A1,B1且||,||,2||成等差数列求λ的值
(3)设已知抛物线为C1:y2=x,将其绕顶点按逆时针方向旋转90°变成C1.圆C2:x2+(y-4)=1的圆心为点N.已知点P是抛物线C1上一点(异于原点),过点P作圆C2的两条切线,交抛物线C1于T,S,两点,若过N,P两点的直线l垂直于TS,求直线l的方程.

查看答案和解析>>

已知抛物线的顶点在坐标原点O,焦点F在x轴正半轴上,倾斜角为锐角的直线l过F点,设直线l与抛物线交于A、B两点,与抛物线的准线交于M点,
MF
FB
(λ>0)
(1)若λ=1,求直线l斜率
(2)若点A、B在x轴上的射影分别为A1,B1且|
B1F
|,|
OF
|,2|
A1F
|成等差数列求λ的值
(3)设已知抛物线为C1:y2=x,将其绕顶点按逆时针方向旋转90°变成C1′.圆C2:x2+(y-4)2=1的圆心为点N.已知点P是抛物线C1′上一点(异于原点),过点P作圆C2的两条切线,交抛物线C′1于T,S,两点,若过N,P两点的直线l垂直于TS,求直线l的方程.

查看答案和解析>>

 

一、选择题:本大题共12小题,每小题5分,共60分。

1―6ACAABB   7―12DCDACD

二、填空题:本大题共4小题,每小题5分,共20分。

13.60°  14.40  15.    16.6

20090411

17.(本小题满分10分)

   (I)解:因为

       由正弦定理得

       所以

       又

       故   5分

   (II)由

       故

          10分

18.(本小题满分12分)

   (I)解:设等差数列

       由成等比数列,

       得

       即

       得(舍去)。

       故

       所以   6分

   (II)又

       则

       又

       故的等差数列。

       所以   12分

19.(本小题满分12分)

       解:设事件

       则

   (I)设“赛完两局比赛结束”为事件C,则

       则

       即

      

       因为

       所以

       因为   6分

   (II)设“赛完四局比赛结束且乙比甲多2分”为事件D,

       则

       即

      

      

       =     12分

20.(本小题满分12分)

   (I)证明:

          2分

       又

   (II)方法一

       解:过O作

      

       则O1是ABC截面圆的圆心,且BC是直径,

       过O作于M,则M为PA的中点,

       连结O1A,则四边形MAO1O为矩形,

          8分

       过O作于E,连EO1­,

       则为二面角O―AC―B的平面角   10分

       在

      

       在

       所以二面角O―AC―B的大小为   12分

       方法二

       同上,   8分

      

      

      

       设面OAC的法向量为

      

       得

       故

       所以二面角O―AC―B的大小为   12分

 

 

21.(本小题满分12分)

   (I)解:当

       故   1分

       因为   当

       当

       故上单调递减。   5分

   (II)解:由题意知上恒成立,

       即上恒成立。   7分

       令

       因为   9分       

       故上恒成立等价于

          11分

       解得   12分

22.(本小题满分12分)

       解:依题意设抛物线方程为

       直线

       则的方程为

      

       因为

       即

       故

   (I)若

      

       故点B的坐标为

       所以直线   5分

   (II)联立

      

       则

       又   7分

       故   9分

       因为成等差数列,

       所以

       故

       将代入上式得

       。   12分

 

 

 

 

 


同步练习册答案