题目列表(包括答案和解析)
C.选修4-4:坐标系与参数方程
在极坐标系下,已知圆O:和直线,
(1)求圆O和直线的直角坐标方程;(2)当时,求直线与圆O公共点的一个极坐标.
D.选修4-5:不等式证明选讲
对于任意实数和,不等式恒成立,试求实数的取值范围.
C
[解析] 由基本不等式,得ab≤==-ab,所以ab≤,故B错;+==≥4,故A错;由基本不等式得≤=,即+≤,故C正确;a2+b2=(a+b)2-2ab=1-2ab≥1-2×=,故D错.故选C.
.定义域为R的函数满足,且当时,,则当时,的最小值为( )
(A) (B) (C) (D)
.过点作圆的弦,其中弦长为整数的共有 ( )
A.16条 B. 17条 C. 32条 D. 34条
一、选择题:本大题共12小题,每小题5分,共60分。
1―6AABCBD 7―12ACDCBD
二、填空题:本大题共4小题,每小题5分,共20分。
13.60° 14.-8 15. 16.6
三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤。
17.(本小题满分10分)
(I)解:因为
由正弦定理得
所以
又
故 5分
(II)由
故
10分
18.(本小题满分12分)
(I)解:当
故 1分
因为 当
当
故上单调递减。 5分
(II)解:由题意知上恒成立,
即上恒成立。 7分
令
因为 9分
故上恒成立等价于
11分
解得 12分
19.(本小题满分12分)
(I)证明:
2分
又
|