题目列表(包括答案和解析)
(本小题满分16分)
设是定义在区间上的函数,其导函数为。如果存在实数和函数,其中对任意的都有>0,使得,则称函数具有性质。
(1)设函数,其中为实数。
(i)求证:函数具有性质; (ii)求函数的单调区间。
(2)已知函数具有性质。给定设为实数,
,,且,
若||<||,求的取值范围。
(本小题满分13分)
已知命题:方程表示焦点在y轴上的椭圆; 命题:直线
与抛物线 有两个交点
(I)若为真命题,求实数的取值范围
(II)若,求实数的取值范围。
已知向量
(I)若的值;(II)若向量的最大值。
已知向量
(I)若的值;
(II)若向量的最大值。
一、选择题:本大题共12小题,每小题5分,共60分。
1―6AABCBD 7―12ACDCBD
二、填空题:本大题共4小题,每小题5分,共20分。
13.60° 14.-8 15. 16.6
三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤。
17.(本小题满分10分)
(I)解:因为
由正弦定理得
所以
又
故 5分
(II)由
故
10分
18.(本小题满分12分)
(I)解:当
故 1分
因为 当
当
故上单调递减。 5分
(II)解:由题意知上恒成立,
即上恒成立。 7分
令
因为 9分
故上恒成立等价于
11分
解得 12分
19.(本小题满分12分)
(I)证明:
2分
又
|