解: 由已知得切点为, 且 ----------1分 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=ex-ax,其中a>0.

(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

单调递减;当单调递增,故当时,取最小值

于是对一切恒成立,当且仅当.        ①

时,单调递增;当时,单调递减.

故当时,取最大值.因此,当且仅当时,①式成立.

综上所述,的取值集合为.

(Ⅱ)由题意知,

,则.当时,单调递减;当时,单调递增.故当

从而

所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使成立.

【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.

 

查看答案和解析>>

已知点),过点作抛物线的切线,切点分别为(其中).

(Ⅰ)若,求的值;

(Ⅱ)在(Ⅰ)的条件下,若以点为圆心的圆与直线相切,求圆的方程;

(Ⅲ)若直线的方程是,且以点为圆心的圆与直线相切,

求圆面积的最小值.

【解析】本试题主要考查了抛物线的的方程以及性质的运用。直线与圆的位置关系的运用。

中∵直线与曲线相切,且过点,∴,利用求根公式得到结论先求直线的方程,再利用点P到直线的距离为半径,从而得到圆的方程。

(3)∵直线的方程是,且以点为圆心的圆与直线相切∴点到直线的距离即为圆的半径,即,借助于函数的性质圆面积的最小值

(Ⅰ)由可得,.  ------1分

∵直线与曲线相切,且过点,∴,即

,或, --------------------3分

同理可得:,或----------------4分

,∴. -----------------5分

(Ⅱ)由(Ⅰ)知,,,则的斜率

∴直线的方程为:,又

,即. -----------------7分

∵点到直线的距离即为圆的半径,即,--------------8分

故圆的面积为. --------------------9分

(Ⅲ)∵直线的方程是,且以点为圆心的圆与直线相切∴点到直线的距离即为圆的半径,即,    ………10分

当且仅当,即时取等号.

故圆面积的最小值

 

查看答案和解析>>

(本题满分14分)已知函数的图象在点处的切线的斜率为,且在处取得极小值。

(1)求的解析式;

(2)已知函数定义域为实数集,若存在区间,使得的值域也是,称区间为函数的“保值区间”.

①当时,请写出函数的一个“保值区间”(不必证明);

②当时,问是否存在“保值区间”?若存在,写出一个“保值区间”并给予证明;若不存在,请说明理由.

 

查看答案和解析>>

(本题满分14分)已知函数的图象在点处的切线的斜率为,且在处取得极小值。
(1)求的解析式;
(2)已知函数定义域为实数集,若存在区间,使得的值域也是,称区间函数的“保值区间”.
①当时,请写出函数的一个“保值区间”(不必证明);
②当时,问是否存在“保值区间”?若存在,写出一个“保值区间”并给予证明;若不存在,请说明理由.

查看答案和解析>>

(本题满分13分)
已知函数处取得极小值,其图象过点A(0,1),且在点A处切线的斜率为—1。
(1)求的解析式;
(2)设函数上的值域也是,则称区间为函数的“保值区间”。
①证明:当不存在“保值区间”;
②函数是否存在“保值区间”?若存在,写出一个“保值区间”(不必证明);若不存在,说明理由。

查看答案和解析>>


同步练习册答案