题目列表(包括答案和解析)
(本小题满分12分)
已知直线过椭圆的右焦点,抛物线:的焦点为椭圆的上顶点,且直线交椭圆于、两点,点、、 在直线上的射影依次为点、、.
(1)求椭圆的方程;
(2)若直线l交y轴于点,且,当变化时,探求的值是否为定值?若是,求出的值,否则,说明理由;
(3)连接、,试探索当变化时,直线与是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.
(本小题满分12分)
如图,已知椭圆C1的中心在原点O,长轴左、右端点M,N在x轴上,椭圆C2的短轴为MN,且C1,C2的离心率都为e,直线l⊥MN,l与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A,B,C,D.
(I)设,求与的比值;
(II)当e变化时,是否存在直线l,使得BO∥AN,并说明理由.
(本小题满分12分)
如图,已知椭圆C1的中心在原点O,长轴左、右端点M,N在x轴上,椭圆C2的短轴为MN,且C1,C2的离心率都为e,直线l⊥MN,l与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A,B,C,D.
(I)设,求与的比值;
(II)当e变化时,是否存在直线l,使得BO∥AN,并说明理由.
(本小题满分12分)
如图,已知椭圆C1的中心在原点O,长轴左、右端点M,N在x轴上,椭圆C2的短轴为MN,且C1,C2的离心率都为e,直线l⊥MN,l与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A,B,C,D.
(I)设,求与的比值;
(II)当e变化时,是否存在直线l,使得BO∥AN,并说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com