解:(I)设等比数列的公比为 查看更多

 

题目列表(包括答案和解析)

在平行四边形OABC中,已知过点C的直线与线段OA,OB分别相交于点M,N.若
OM
=x
OA
ON
=y
OB

(1)求证:x与y的关系为y=
x
x+1

(2)设f(x)=
x
x+1
,定义函数F(x)=
1
f(x)
-1(0<x≤1)
,点列Pi(xi,F(xi))(i=1,2,…,n,n≥2)在函数F(x)的图象上,且数列{xn}是以首项为1,公比为
1
2
的等比数列,O为原点,令
OP
=
OP1
+
OP2
+…+
OPn
,是否存在点Q(1,m),使得
OP
OQ
?若存在,请求出Q点坐标;若不存在,请说明理由.
(3)设函数G(x)为R上偶函数,当x∈[0,1]时G(x)=f(x),又函数G(x)图象关于直线x=1对称,当方程G(x)=ax+
1
2
在x∈[2k,2k+2](k∈N)上有两个不同的实数解时,求实数a的取值范围.

查看答案和解析>>

在平行四边形OABC中,已知过点C的直线与线段OA,OB分别相交于点M,N.若
OM
=x
OA
ON
=y
OB

(1)求证:x与y的关系为y=
x
x+1

(2)设f(x)=
x
x+1
,定义函数F(x)=
1
f(x)
-1(0<x≤1)
,点列Pi(xi,F(xi))(i=1,2,…,n,n≥2)在函数F(x)的图象上,且数列{xn}是以首项为1,公比为
1
2
的等比数列,O为原点,令
OP
=
OP1
+
OP2
+…+
OPn
,是否存在点Q(1,m),使得
OP
OQ
?若存在,请求出Q点坐标;若不存在,请说明理由.
(3)设函数G(x)为R上偶函数,当x∈[0,1]时G(x)=f(x),又函数G(x)图象关于直线x=1对称,当方程G(x)=ax+
1
2
在x∈[2k,2k+2](k∈N)上有两个不同的实数解时,求实数a的取值范围.

查看答案和解析>>

已知数列是首项为的等比数列,且满足.

(1)   求常数的值和数列的通项公式;

(2)   若抽去数列中的第一项、第四项、第七项、……、第项、……,余下的项按原来的顺序组成一个新的数列,试写出数列的通项公式;

(3) 在(2)的条件下,设数列的前项和为.是否存在正整数,使得?若存在,试求所有满足条件的正整数的值;若不存在,请说明理由.

【解析】第一问中解:由,,

又因为存在常数p使得数列为等比数列,

,所以p=1

故数列为首项是2,公比为2的等比数列,即.

此时也满足,则所求常数的值为1且

第二问中,解:由等比数列的性质得:

(i)当时,

(ii) 当时,

所以

第三问假设存在正整数n满足条件,则

则(i)当时,

 

查看答案和解析>>

在平行四边形OABC中,已知过点C的直线与线段OA,OB分别相交于点M,N.若
(1)求证:x与y的关系为
(2)设,定义函数,点列Pi(xi,F(xi))(i=1,2,…,n,n≥2)在函数F(x)的图象上,且数列{xn}是以首项为1,公比为的等比数列,O为原点,令,是否存在点Q(1,m),使得?若存在,请求出Q点坐标;若不存在,请说明理由.
(3)设函数G(x)为R上偶函数,当x∈[0,1]时G(x)=f(x),又函数G(x)图象关于直线x=1对称,当方程在x∈[2k,2k+2](k∈N)上有两个不同的实数解时,求实数a的取值范围.

查看答案和解析>>

在平行四边形OABC中,已知过点C的直线与线段OA,OB分别相交于点M,N.若
(1)求证:x与y的关系为
(2)设,定义函数,点列Pi(xi,F(xi))(i=1,2,…,n,n≥2)在函数F(x)的图象上,且数列{xn}是以首项为1,公比为的等比数列,O为原点,令,是否存在点Q(1,m),使得?若存在,请求出Q点坐标;若不存在,请说明理由.
(3)设函数G(x)为R上偶函数,当x∈[0,1]时G(x)=f(x),又函数G(x)图象关于直线x=1对称,当方程在x∈[2k,2k+2](k∈N)上有两个不同的实数解时,求实数a的取值范围.

查看答案和解析>>


同步练习册答案