平面.平面.平面 注:多写的按前四对给分.每正确一对.给一分 查看更多

 

题目列表(包括答案和解析)

选考题:从以下3题中选择2题做答,每题7分,若3题全做,则按前2题给分。

(1)(选修4—2   矩阵与变换)(本题满分7分)

变换是将平面上每个点的横坐标乘2,纵坐标乘4,变到点

(Ⅰ)求变换的矩阵;

(Ⅱ)圆在变换的作用下变成了什么图形?

(2)(选修4—4 参数方程与极坐标)(本题满分7分)

在极坐标系下,已知圆O:和直线

(Ⅰ)求圆O和直线的直角坐标方程;

(Ⅱ)当时,求直线与圆O公共点的一个极坐标.

(3)(选修4—5  不等式证明选讲)(本题满分7分)

对于任意实数,不等式恒成立,试求实数的取值范围.

查看答案和解析>>

 (本题是选做题,满分28分,请在下面四个题目中选两个作答,每小题14分,多做按前两题给分)

A.(选修4-1:几何证明选讲)

如图,△ABC是⊙O的内接三角形,PA是⊙O的切线,PBAC于点E,交⊙O于点D,若PEPAPD=1,BD=8,求线段BC的长.

 

 

 

 

 

 

B.(选修4-2:矩阵与变换)

在直角坐标系中,已知椭圆,矩阵阵,求在矩阵作用下变换所得到的图形的面积.

C.(选修4-4:坐标系与参数方程)

直线(为参数,为常数且)被以原点为极点,轴的正半轴为极轴,方程为的曲线所截,求截得的弦长.

D.(选修4-5:不等式选讲)

,求证:.

 

 

 

 

 

查看答案和解析>>

(2012•肇庆一模)设M为平面内一些向量组成的集合,若对任意正实数λ和向量a∈M,都有λa∈M,则称M为“点射域”,则下列平面向量的集合为“点射域”的是(  )

查看答案和解析>>

(2013•崇明县二模)设M为平面内一些向量组成的集合,若对任意正实数λ和向量
a
∈M,都有λ
a
M,则称M为“点射域”,在此基础上给出下列四个向量集合:①{(x,y)|y≥x2};②{(x,y)|
x-y≥0
x+y≤0
};③{(x,y)|x2+y2-2y≥0};④{(x,y)|3x2+2y2-12<0}.其中平面向量的集合为“点射域”的序号是

查看答案和解析>>

设M为平面内一些向量组成的集合,若对任意正实数λ和向量
a
∈M
,都有λ
a
∈M
,则称M为“点射域”,则下列平面向量的集合为“点射域”的是(  )

查看答案和解析>>


同步练习册答案