以下证明对于任意的.直线与的交点均在直线上 查看更多

 

题目列表(包括答案和解析)

已知双曲线C的中心在原点,D(1,0)是它的一个顶点,
d
=(1,
2
)
是它的一条渐近线的一个方向向量.
(1)求双曲线C的方程;
(2)若过点(-3,0)任意作一条直线与双曲线C交于A,B两点 (A,B都不同于点D),求证:
DA
DB
为定值;
(3)对于双曲线Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E为它的右顶点,M,N为双曲线Γ上的两点(都不同于点E),且EM⊥EN,那么直线MN是否过定点?若是,请求出此定点的坐标;若不是,说明理由.然后在以下三个情形中选择一个,写出类似结论(不要求书写求解或证明过程).
情形一:双曲线
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左顶点;
情形二:抛物线y2=2px(p>0)及它的顶点;
情形三:椭圆
x2
a2
+
y2
b2
=1(a>b>0)
及它的顶点.

查看答案和解析>>

(本题满分15分)如图,已知直线与抛物线和圆都相切,的焦点.

(1)求的值;

(2)设上的一动点,以为切点作抛物线的切线,直线轴于点,以为邻边作平行四边形,证明:点在一条定直线上;

(3)在(2)的条件下,记点所在的定直线为,直线轴交点为,连接交抛物线两点,求的面积的取值范围.

22。(本题满分15分)已知函数

(1)求函数的图像在点处的切线方程;

(2)若,且对任意恒成立,求的最大值;

(3)当时,证明

查看答案和解析>>

(2013•松江区二模)已知双曲线C的中心在原点,D(1,0)是它的一个顶点,
d
=(1,
2
)
是它的一条渐近线的一个方向向量.
(1)求双曲线C的方程;
(2)若过点(-3,0)任意作一条直线与双曲线C交于A,B两点 (A,B都不同于点D),求证:
DA
DB
为定值;
(3)对于双曲线Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E为它的右顶点,M,N为双曲线Γ上的两点(都不同于点E),且EM⊥EN,那么直线MN是否过定点?若是,请求出此定点的坐标;若不是,说明理由.然后在以下三个情形中选择一个,写出类似结论(不要求书写求解或证明过程).
情形一:双曲线
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左顶点;
情形二:抛物线y2=2px(p>0)及它的顶点;
情形三:椭圆
x2
a2
+
y2
b2
=1(a>b>0)
及它的顶点.

查看答案和解析>>

已知曲线C为顶点在原点,以x轴为对称轴,开口向右的抛物线,又点M(2,1)到抛物线C的准线的距离为

(1)求抛物线C的方程;

(2)证明:过点M的任意一条直线与抛物线恒有公共点;

(3)若(2)中的直线(i=1,2,3, 4)分别与抛物线C交于上下两点,又点的纵坐标依次成公差不为0的等差数列,试分析的大小关系。

查看答案和解析>>

已知椭圆,以原点为圆心,椭圆的短半轴为半径的圆与直线相切.

(1)求椭圆C的方程;

(2)设轴对称的任意两个不同的点,连结交椭圆于另一点,证明:直线x轴相交于定点

(3)在(2)的条件下,过点的直线与椭圆交于两点,求的取值范围.

 

查看答案和解析>>


同步练习册答案