当时.令得 查看更多

 

题目列表(包括答案和解析)

设函数

(1)当时,求曲线处的切线方程;

(2)当时,求的极大值和极小值;

(3)若函数在区间上是增函数,求实数的取值范围.

【解析】(1)中,先利用,表示出点的斜率值这样可以得到切线方程。(2)中,当,再令,利用导数的正负确定单调性,进而得到极值。(3)中,利用函数在给定区间递增,说明了在区间导数恒大于等于零,分离参数求解范围的思想。

解:(1)当……2分

   

为所求切线方程。………………4分

(2)当

………………6分

递减,在(3,+)递增

的极大值为…………8分

(3)

①若上单调递增。∴满足要求。…10分

②若

恒成立,

恒成立,即a>0……………11分

时,不合题意。综上所述,实数的取值范围是

 

查看答案和解析>>

精英家教网外轮除特许外,不得进入离我国海岸线12海里以内的区域,如图:我国某海岛海岸线是半径为6海里的圆形区域,在直径的两个端点A、B设立两个观察点,已知一外轮在点P处,测得∠BAP=α,∠ABP=β.
(1)当α=30°,β=120°时,该外轮是否已进入我领海主权范围内?
(2)角α,β应满足什么关系时?就应向外轮发出警告,令其退出我海域.

查看答案和解析>>

24、2009年5月11日,中国内地出现首例输入性甲型H1N1流感疑似病例.中国进入防控甲型H1N1流感的关键时期,到目前为止,中国在防控方面取得了令人满意的成绩.据统计:公众对我国防控甲型H1N1流感的满意率p,(不满意率为q,p+q=1),现随机从人群中抽出n个人调查对我国防控甲型H1N1流感的满意度,用随机变量x表示调查的这些人中的不满意的人数.
(1)当n=3,p=0.9,列出随机变量X的分布列,并求出随机变量x的数学期望E(X).
(2)试证明:E(X)=nq.

查看答案和解析>>

2009年5月11日,中国内地出现首例输入性甲型H1N1流感疑似病例。中国进入防控甲型H1N1流感的关键时期,到目前为止,中国在防控方面取得了令人满意的成绩。据统计:公众对我国防控甲型H1N1流感的满意率,(不满意率为),现随机从人群中抽出个人调查对我国防控甲型H1N1流感的满意度,用随机变量表示调查的这些人中的不满意的人数.

(1)当,列出随机变量的分布列,并求出随机变量的数学期望

(2)试证明:=.

查看答案和解析>>

外轮除特许外,不得进入离我国海岸线12海里以内的区域,如图:我国某海岛海岸线是半径为6海里的圆形区域,在直径的两个端点A、B设立两个观察点,已知一外轮在点P处,测得∠BAP=α,∠ABP=β.
(1)当α=30°,β=120°时,该外轮是否已进入我领海主权范围内?
(2)角α,β应满足什么关系时?就应向外轮发出警告,令其退出我海域.

查看答案和解析>>


同步练习册答案