(本题满分16分)第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分6分。 定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”。如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比。已知椭圆。 若椭圆,判断与是否相似?如果相似,求出与的相似比;如果不相似,请说明理由; 写出与椭圆相似且短半轴长为的椭圆的方程;若在椭圆上存在两点、关于直线对称,求实数的取值范围? 如图:直线与两个“相似椭圆”和分别交于点和点, 试在椭圆和椭圆上分别作出点和点(非椭圆顶点),使和组成以为相似比的两个相似三角形,写出具体作法。(不必证明)
查看答案和解析>>
上海市徐汇区2011届高三下学期学习能力诊断卷(数学理).doc | | | (本题满分16分)第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分6分。 定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”。如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比。已知椭圆。 若椭圆,判断与是否相似?如果相似,求出与的相似比;如果不相似,请说明理由; 写出与椭圆相似且短半轴长为的椭圆的方程;若在椭圆上存在两点、关于直线对称,求实数的取值范围? 如图:直线与两个“相似椭圆”和分别交于点和点, 试在椭圆和椭圆上分别作出点和点(非椭圆顶点),使和组成以为相似比的两个相似三角形,写出具体作法。(不必证明)
查看答案和解析>>
点P在直线l:y=x-l上,若存在过P的直线交抛物线y=x 2于A、B两点,且|PA|=|AB|,则称点P为“ 点”。那么下列结论中正确的是“ 点” A.直线l上的所有点都是“ 点” B.直线l上仅有有限个点是“ 点” C.直线l上的所有点都不是“ 点” D.直线l上有无穷多个点(但不是所有的点)是“ 点”
查看答案和解析>>
| | |