(1)由题意可得 解得, --------------2分 查看更多

 

题目列表(包括答案和解析)

阅读下面的文言文,完成下面5题。

李斯论  (清)姚鼐

苏子瞻谓李斯以荀卿之学乱天下,是不然。秦之乱天下之法,无待于李斯,斯亦未尝以其学事秦。

20070327

 
当秦之中叶,孝公即位,得商鞅任之。商鞅教孝公燔《诗》、《书》,明法令,设告坐之过,而禁游宦之民。因秦国地形便利,用其法,富强数世,兼并诸侯,迄至始皇。始皇之时,一用商鞅成法而已,虽李斯助之,言其便利,益成秦乱,然使李斯不言其便,始皇固自为之而不厌。何也?秦之甘于刻薄而便于严法久矣,其后世所习以为善者也。斯逆探始皇、二世之心,非是不足以中侈君张吾之宠。是以尽舍其师荀卿之学,而为商鞅之学;扫去三代先王仁政,而一切取自恣肆以为治,焚《诗》、《书》,禁学士,灭三代法而尚督责,斯非行其学也,趋时而已。设所遭值非始皇、二世,斯之术将不出于此,非为仁也,亦以趋时而已。

君子之仕也,进不隐贤;小人之仕也,无论所学识非也,即有学识甚当,见其君国行事,悖谬无义,疾首嚬蹙于私家之居,而矜夸导誉于朝庭之上,知其不义而劝为之者,谓天下将谅我之无可奈何于吾君,而不吾罪也;知其将丧国家而为之者,谓当吾身容可以免也。且夫小人虽明知世之将乱,而终不以易目前之富贵,而以富贵之谋,贻天下之乱,固有终身安享荣乐,祸遗后人,而彼宴然无与者矣。嗟乎!秦未亡而斯先被五刑夷三族也,其天之诛恶人,亦有时而信也邪!

且夫人有为善而受教于人者矣,未闻为恶而必受教于人者也。荀卿述先王而颂言儒效,虽间有得失,而大体得治世之要。而苏氏以李斯之害天下罪及于卿,不亦远乎?行其学而害秦者,商鞅也;舍其学而害秦者,李斯也。商君禁游宦,而李斯谏逐客其始之不同术也,而卒出于同者,岂其本志哉!宋之世,王介甫以平生所学,建熙宁新法,其后章惇、曾布、张商英、蔡京之伦,曷尝学介甫之学耶?而以介甫之政促亡宋,与李斯事颇相类。夫世言法术之学足亡人国,固也。吾谓人臣善探其君之隐,一以委曲变化从世好者,其为人尤可畏哉!尤可畏哉!

 [注释]①宴然:安闲的样子。②谏逐客:秦始皇曾发布逐客令,驱逐六国来到秦国做官的人,李斯写了著名的《谏逐客书》,提出了反对意见。

对下列句子中加点的词语的解释,不正确的一项是(    )

    A.非是不足以中侈君张吾之宠         中:符合

    B.灭三代法而尚督责                 尚:崇尚

    C.知其不义而劝为之者               劝:鼓励

    D.而终不以易目前之富贵             易:交换

下列各组句子中,加点的词的意义和用法相同的一组是(    )

A.因秦国地形便利             不如因普遇之

    B.设所遭值非始皇、二世       非其身之所种则不食

    C.且夫小人虽明知世之将乱       臣死且不避,卮酒安足辞

    D.不亦远乎                     王之好乐甚,则齐国其庶几乎

下列各项中,加点词语与现代汉语意义不相同的一项是(    )

    A.小人之仕也,无论所学识非也

    B.而大体得治世之要

C.而以富贵之谋,贻天下之乱

    D.一以委曲变化从世好者

下列各句中对文章的阐述,不正确的一项是(    )

A.苏轼认为李斯以荀卿之学辅佐秦朝行暴政,致使天下大乱,作者则认为李斯是完全舍弃了荀子的说学,李斯的做法只不过是追随时势罢了。

B.作者由论李斯事秦进而泛论人臣事君的问题,强调为臣者对于国君的“悖谬无义”之政,不应为自身的富贵而阿附甚至助长之。

C.此文主旨在于指出秦行暴政是君王自身的原因,作者所论的不可“趋时”,“中侈君张吾之宠”的道理,在今天仍有借鉴意义。

D.文章开门见山,摆出苏轼的观点,然后通过对秦国发展历史的分析,驳斥了苏说的谬论,提出了自己的见解。论证严密,逐层深入,是一篇典范的史论。

把文言文阅读材料中画横线的句子翻译成现代汉语。

   (1)秦之甘于刻薄而便于严法久矣

译文:                                                                    

   (2)谓天下将谅我之无可奈何于吾君,而不吾罪也

译文:                                                                   

   (3)其始之不同术也,而卒出于同者,岂其本志哉

译文:                                                                   

查看答案和解析>>

设点是抛物线的焦点,是抛物线上的个不同的点().

(1) 当时,试写出抛物线上的三个定点的坐标,从而使得

(2)当时,若

求证:

(3) 当时,某同学对(2)的逆命题,即:

“若,则.”

开展了研究并发现其为假命题.

请你就此从以下三个研究方向中任选一个开展研究:

① 试构造一个说明该逆命题确实是假命题的反例(本研究方向最高得4分);

② 对任意给定的大于3的正整数,试构造该假命题反例的一般形式,并说明你的理由(本研究方向最高得8分);

③ 如果补充一个条件后能使该逆命题为真,请写出你认为需要补充的一个条件,并说明加上该条件后,能使该逆命题为真命题的理由(本研究方向最高得10分).

【评分说明】本小题若填空不止一个研究方向,则以实得分最高的一个研究方向的得分作为本小题的最终得分.

【解析】第一问利用抛物线的焦点为,设

分别过作抛物线的准线的垂线,垂足分别为.

由抛物线定义得到

第二问设,分别过作抛物线的准线垂线,垂足分别为.

由抛物线定义得

第三问中①取时,抛物线的焦点为

分别过作抛物线的准线垂线,垂足分别为.由抛物线定义得

,不妨取

解:(1)抛物线的焦点为,设

分别过作抛物线的准线的垂线,垂足分别为.由抛物线定义得

 

因为,所以

故可取满足条件.

(2)设,分别过作抛物线的准线垂线,垂足分别为.

由抛物线定义得

   又因为

所以.

(3) ①取时,抛物线的焦点为

分别过作抛物线的准线垂线,垂足分别为.由抛物线定义得

,不妨取

.

是一个当时,该逆命题的一个反例.(反例不唯一)

② 设,分别过

抛物线的准线的垂线,垂足分别为

及抛物线的定义得

,即.

因为上述表达式与点的纵坐标无关,所以只要将这点都取在轴的上方,则它们的纵坐标都大于零,则

,所以.

(说明:本质上只需构造满足条件且的一组个不同的点,均为反例.)

③ 补充条件1:“点的纵坐标)满足 ”,即:

“当时,若,且点的纵坐标)满足,则”.此命题为真.事实上,设

分别过作抛物线准线的垂线,垂足分别为,由

及抛物线的定义得,即,则

又由,所以,故命题为真.

补充条件2:“点与点为偶数,关于轴对称”,即:

“当时,若,且点与点为偶数,关于轴对称,则”.此命题为真.(证略)

 

查看答案和解析>>

已知函数取得极值

(1)求的单调区间(用表示);

(2)设,若存在,使得成立,求的取值范围.

【解析】第一问利用

根据题意取得极值,

对参数a分情况讨论,可知

时递增区间:    递减区间: ,

时递增区间:    递减区间: ,

第二问中, 由(1)知:

 

从而求解。

解:

…..3分

取得极值, ……………………..4分

(1) 当时  递增区间:    递减区间: ,

时递增区间:    递减区间: , ………….6分

 (2)  由(1)知:

 

……………….10分

, 使成立

    得:

 

查看答案和解析>>

已知函数

(Ⅰ)求函数的单调区间;

(Ⅱ)设,若对任意,不等式 恒成立,求实数的取值范围.

【解析】第一问利用的定义域是     

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函数的单调递增区间是(1,3);单调递减区间是

第二问中,若对任意不等式恒成立,问题等价于只需研究最值即可。

解: (I)的定义域是     ......1分

              ............. 2分

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函数的单调递增区间是(1,3);单调递减区间是     ........4分

(II)若对任意不等式恒成立,

问题等价于,                   .........5分

由(I)可知,在上,x=1是函数极小值点,这个极小值是唯一的极值点,

故也是最小值点,所以;            ............6分

当b<1时,

时,

当b>2时,;             ............8分

问题等价于 ........11分

解得b<1 或 或    即,所以实数b的取值范围是 

 

查看答案和解析>>

(1)椭圆C:+=1(a>b>0)与x轴交于A、B两点,点P是椭圆C上异于A、B的任意一点,直线PA、PB分别与y轴交于点M、N,求证:AN·BM为定值b2-a2.

(2)由(1)类比可得如下真命题:双曲线C:-=1(a>0,b>0)与x轴交于A、B两点,点P是双曲线C上异于A、B的任意一点,直线PA、PB分别与y轴交于点M、N,求证:AN·BM为定值.请写出这个定值(不要求给出解题过程).

查看答案和解析>>


同步练习册答案