已知直线过与抛物线交于.两点..为坐标原点.且满足.在轴右侧. 查看更多

 

题目列表(包括答案和解析)

已知直线l与抛物线y2=8x交于A、B两点,且l经过抛物线的焦点F,A点的坐标为(8,8),则线段AB的中点到准线的距离是
 

查看答案和解析>>

已知直线L与抛物线C:x2=4y相切于点P(2,1),且与x轴交于点A,O为坐标原点,定点B(2,0)
(1)求点A的横坐标.
(2)设动点M满足
AB
BM
+
2
|
AM
|=0
,点M的轨迹K.若过点B的直线L1(斜率不等于0)与轨迹K交于不同的两点E、F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.

查看答案和解析>>

已知直线l与抛物线y2=8x交于A、B两点,且l经过抛物线的焦点F,A点的坐标为(8,8),则线段AB的中点到准线的距离是(  )
A、
25
4
B、
25
2
C、
25
8
D、25

查看答案和解析>>

已知直线l与抛物线y2=8x交于A、B两点,且l经过抛物线的焦点F,A点的坐标

为(8,8),则线段AB的中点到准线的距离是(  )

A.

B.

C.

D.25

查看答案和解析>>

已知直线l与抛物线y2=8x交于A、B两点,且l经过抛物线的焦点F,A点的坐标为(8,8),则线段AB的中点到准线的距离是(  )

A.

B.

C.

D.25

查看答案和解析>>

一、选择题:1、A2、A3、B4、B5、C6、D7、B8、D9、D10、A

二、填空题:11、1000   12、   13、三条侧棱两两互相垂直的三棱锥中,,则此三棱锥的外接球半径为   14、(1)8  (2)

三、解答题:

15、(1)∵,  ∴,  ………(2分)

,( 4分),………(6分)

所求解集为     ………(8分)

(2)∵     

          ………(10分) 

………(12分)  

  

的周期为

递增区间

16、解:解析:由题意可知,这个几何体是直三棱柱,且

(1)连结

由直三棱柱的性质得平面,所以,则

四边形为矩形.

由矩形性质得,的中点

中,由中位线性质,得

平面平面

所以平面。    (6分)

(2)因为平面平面,所以

在正方形:中,

又因为,所以平面

,得平面.    (14分)

17、解:(1)由题意知

,可得    (6分)

(2)当时,∵

,两式相减得

  为常数,

,…,成等比数列。

其中,∴           ………(12分)

18、解:设二次函数,则,解得

代入上式:

对于,由已知,得:,解得

代入:

而4月份的实际产量为万件,相比之下,1.35比1.3更接近1.37.

∴选用函数作模型函数较好.

19、(1)    ………(2分)

(1)由题意;,解得

∴所求的解析式为 ………(6分)

(2)由(1)可得

,得 , ………(8分)

∴当时, ,当时, ,当时,

因此,当时, 有极大值,………(8分)

时, 有极小值,………(10分)

∴函数的图象大致如图。

由图可知:。………(14分)

20、解:(1)直线轴垂直时与抛物线交于一点,不满足题意.

设直线的方程为,代入得,

 

,且,即.

的中点.

.由轴右侧得.

轨迹的方程为.

(2)∵曲线的方程为

  ∴

,∴

的取值范围为

 

 

 


同步练习册答案