题目列表(包括答案和解析)
OP1 |
OP2 |
OP |
OP1 |
OP2 |
(08年哈六中)椭圆的中心是原点O,它的短轴长为,相应于焦点的准线与轴相交于点A,,过点A的直线与椭圆相交于P、Q两点。
(I) 求椭圆的方程及离心率;
(II)若求直线PQ的方程;
(III)设,过点P且平行于准线的直线与椭圆相交于另一点M,证明
。
(04年天津卷理)(14分)
椭圆的中心是原点O,它的短轴长为,相应于焦点的准线与轴相交于点A,,过点A的直线与椭圆相交于P、Q两点。
(I) 求椭圆的方程及离心率;
(II)若求直线PQ的方程;
(III)设,过点P且平行于准线的直线与椭圆相交于另一点M,证明
。
(04年全国卷III文)(12分)
设椭圆的两个焦点是 F1(-c,0), F2(c,0)(c>0),且椭圆上存在点P,使得直线 PF1与直线PF2垂直.
(I)求实数 m 的取值范围.
(II)设l是相应于焦点 F2的准线,直线PF2与l相交于点Q. 若,求直线PF2的方程.
(本小题满分14分)
已知函数.
(I) 若且函数为奇函数,求实数;
(II) 若试判断函数的单调性;
(III) 当,,时,求函数的对称轴或对称中心.
一、选择题
1~4 BBCA 5~8 ADCD
二、填空题
9、 10、 = 11、 12. 42 ;
13. 2或 14. 15.
三、解答题
16(本小题满分12分)
1)
………………4分
2)当单调递减,故所求区间为 ………………8分
(3)时
………………12分
17(本题满分14分)
解:(Ⅰ)由函数的图象关于原点对称,得,………1分
∴,∴. ………2分
∴,∴. ……………3分
∴,即. ………………5分
∴. ……………………………6分
(Ⅱ)由(Ⅰ)知,∴.
由 ,∴. …………………8分
0
+
0
ㄋ
极小
ㄊ
极大
ㄋ
∴. …………12分
18
证明:(I)在正中,是的中点,所以.
又,,,所以.
而,所以.所以由,有.
(II)取正的底边的中点,连接,则.
又,所以.
如图,以点为坐标原点,为轴,为轴,
建立空间直角坐标系.设,则有,
,,,,,.再设是面的法向量,则有
,即,可设.
又是面的法向量,因此
,
所以,即平面PAB与平面PDC所成二面角为.
(Ⅲ)由(II)知,设与面所成角为,则
所以与面所成角的正弦值为.
19(本题满分14分)
20解:(I)建立图示的坐标系,设椭圆方程为依题意,
椭圆方程为………………………………2分
F(-1,0)将x=-1代入椭圆方程得
∴当彗星位于太阳正上方时,二者在图中的距离为1.5┩.……………………6分
(Ⅱ)由(I)知,A1(-2,0),A2(2,0),
|