设函数的图象关于原点对称.的图象在其上一点处的切线的斜率为.且当时有极值. 查看更多

 

题目列表(包括答案和解析)

设函数的图象关于原点对称,的图象在点处的切线的斜率为,且当有极值.

(Ⅰ)求的值; 

(Ⅱ)求的所有极值.

查看答案和解析>>

设函数的图象关于原点对称,的图象在点处的切线的斜率为,且当有极值.
(Ⅰ)求的值; 
(Ⅱ)求的所有极值.

查看答案和解析>>

设函数的图象关于原点对称,f(x)的图象在点P(1,m)处的切线的斜率为-6,且当x=2时f(x)有极值.
(Ⅰ)求a、b、c、d的值;
(Ⅱ)求f(x)的所有极值.

查看答案和解析>>

设函数的图象关于原点对称,f(x)的图象在点P(1,m)处的切线的斜率为-6,且当x=2时f(x)有极值.
(Ⅰ)求a、b、c、d的值;
(Ⅱ)求f(x)的所有极值.

查看答案和解析>>

设函数的图象关于原点对称,f(x)的图象在点P(1,m)处的切线的斜率为-6,且当x=2时f(x)有极值.
(Ⅰ)求a、b、c、d的值;
(Ⅱ)求f(x)的所有极值.

查看答案和解析>>

一、选择题

1~4   BBCA    5~8   ADCD

二、填空题

9、      10、    =      11、        12.   42  

13.  2或        14.        15.

三、解答题

16(本小题满分12分)

1)

    ………………4分

  2)当单调递减,故所求区间为      ………………8分

   (3)

       ………………12分

17(本题满分14分)

解:(Ⅰ)由函数的图象关于原点对称,得,………1分

,∴. ………2分

,∴. ……………3分

,即.  ………………5分

. ……………………………6分

 (Ⅱ)由(Ⅰ)知,∴

,∴.   …………………8分

0

+

0

极小

极大

.  …………12分

18

证明:(I)在正中,的中点,所以

,所以

,所以.所以由,有

 (II)取正的底边的中点,连接,则

,所以

如图,以点为坐标原点,轴,轴,

建立空间直角坐标系.设,则有

.再设是面的法向量,则有

,即,可设

是面的法向量,因此

所以,即平面PAB与平面PDC所成二面角为

(Ⅲ)由(II)知,设与面所成角为,则

所以与面所成角的正弦值为

 

19(本题满分14分)

20解:(I)建立图示的坐标系,设椭圆方程为依题意,2a=4,

椭圆方程为………………………………2分

F(-1,0)将x=-1代入椭圆方程得

∴当彗星位于太阳正上方时,二者在图中的距离为1.5┩.……………………6分

(Ⅱ)由(I)知,A1(-2,0),A2(2,0),

又点M异于顶点A1,A2,∴-2<x0<2,

由P、M、A1三点共线可得P

………………………8分

…………………12分

∴P、A2、N三点共线,∴直线A2M与NA2不垂直,

∴点A2不在以MN为直径的圆上…………………………14分

 

 

21.解:(I)  .注意到,即

.所以当变化时,的变化情况如下表:

+

0

递增

极大值

递减

递减

极小值

递增

 

所以的一个极大值,的一个极大值..

(II) 点的中点是,所以的图象的对称中心只可能是.

的图象上一点,关于的对称点是..也在的图象上, 因而的图象是中心对称图形.

(III) 假设存在实数.,.

, 当时, ,而.故此时的取值范围是不可能是.

,当时, ,而.故此时的取值范围是不可能是.

,由的单调递增区间是,知的两个解.而无解. 故此时的取值范围是不可能是.

综上所述,假设错误,满足条件的实数不存在.

 

 

 

 


同步练习册答案