即. 解得: 查看更多

 

题目列表(包括答案和解析)

解:(Ⅰ)设,其半焦距为.则

   由条件知,得

   的右准线方程为,即

   的准线方程为

   由条件知, 所以,故

   从而,  

(Ⅱ)由题设知,设

   由,得,所以

   而,由条件,得

   由(Ⅰ)得.从而,,即

   由,得.所以

   故

查看答案和解析>>

解关于的不等式

【解析】本试题主要考查了含有参数的二次不等式的求解,

首先对于二次项系数a的情况分为三种情况来讨论,

A=0,a>0,a<0,然后结合二次函数的根的情况和图像与x轴的位置关系,得到不等式的解集。

解:①若a=0,则原不等式变为-2x+2<0即x>1

此时原不等式解集为;   

②若a>0,则ⅰ)时,原不等式的解集为

ⅱ)时,原不等式的解集为

  ⅲ)时,原不等式的解集为。 

③若a<0,则原不等式变为

    原不等式的解集为

 

查看答案和解析>>

解析:依题意得f(x)的图象关于直线x=1对称,f(x+1)=-f(x-1),f(x+2)=-f(x),f(x+4)=-f(x+2)=f(x),即函数f(x)是以4为周期的函数.由f(x)在[3,5]上是增函数与f(x)的图象关于直线x=1对称得,f(x)在[-3,-1]上是减函数.又函数f(x)是以4为周期的函数,因此f(x)在[1,3]上是减函数,f(x)在[1,3]上的最大值是f(1),最小值是f(3).

答案:A

查看答案和解析>>

解析 第二列等式的右端分别是1×1,3×3,6×6,10×10,15×15,∵1,3,6,10,15,…第nan与第n-1项an-1(n≥2)的差为:anan-1n,∴a2a1=2,a3a2=3,a4a3=4,…,anan-1n,各式相加得,

ana1+2+3+…+n,其中a1=1,∴an=1+2+3+…+n,即an,∴an2(n+1)2.

答案 n2(n+1)2

查看答案和解析>>

解答题:解答应写出文字说明、证明过程或演算步骤.

美国蓝球职业联赛(NBA)某赛季的总决赛在湖人队与活塞队之间进行,比赛采取七局四胜制,即若有一队胜四场,则此队获胜且比赛结束.因两队实力非常接近,在每场比赛中每队获胜是等可能的.据资料统计,每场比赛组织者可获门票收入100万美元.求在这次总决赛过程中,比赛组织者获得门票收入(万美元)的概率分布及数学期望

查看答案和解析>>


同步练习册答案