题目列表(包括答案和解析)
现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.
(Ⅰ)求这4个人中恰有2人去参加甲游戏的概率;
(Ⅱ)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;
(Ⅲ)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记,求随机变量的分布列与数学期望.
【解析】依题意,这4个人中,每个人去参加甲游戏的概率为,去参加乙游戏的概率为.
设“这4个人中恰有i人去参加甲游戏”为事件
则.
(1)这4个人中恰有2人去参加甲游戏的概率
(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B,则.由于互斥,故
所以,这个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为.
(3)的所有可能取值为0,2,4.由于互斥,互斥,故
所以的分布列是
0 |
2 |
4 |
|
P |
随机变量的数学期望.
某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(百分制)(均为整数)分成6组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题.
(Ⅰ)求分数在[70,80)内的频率,并补全这个频率分布直方图;
(Ⅱ)从频率分布直方图中,估计本次考试的平均分;
(Ⅲ)若从60名学生中随机抽取2人,抽到的学生成绩在[40,70)记0分,在[70,100]记1分,用X表示抽取结束后的总记分,求X的分布列和数学期望.
【解析】第一问中设分数在[70,80)内的频率为x,根据频率分布直方图,则有
(0.01+0.015×2+0.025+0.005)×10+x=1,可得x=0.3,
第二问平均分为:
第三问学生成绩在[40,70)的有0.4×60=24人,
在[70,100]的有0.6×60=36人,并且X的
可能取值是0,1,2.
三个求职者到某公司应聘,该公司为他们提供了A,B,C,D四个岗位,每人从中任选一个岗位。
(1)求恰有两个岗位没有被选的概率;
(2)设选择A岗位的人数为,求的分布列及数学期望。
【解析】第一问利用古典概型概率公式得到记“恰有2个岗位没有被选”为事件A,则
第二问中,可能取值为0,1,2,3, 则 ,
,
从而得到分布列和期望值。
解:(1)记“恰有2个岗位没有被选”为事件A,则……6分
(2)可能取值为0,1,2,3,… 7分
则 ,
,
列出分布列 ( 1分)
A.3 B.6 C.10 D.不能确定
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com