当时.原函数的最大值与最小值的和 查看更多

 

题目列表(包括答案和解析)

设函数f(x)=
3
sinxcosx+cos2x+a

(Ⅰ)写出函数的最小正周期及单调递减区间;
(Ⅱ)当x∈[-
π
6
π
3
]时,函数f(x)的最大值与最小值的和为
3
2
,求f(x)的解析式;
(Ⅲ)将满足(Ⅱ)的函数f(x)的图象向右平移
π
12
个单位,纵坐标不变横坐标变为原来的2倍,再向下平移
1
2
,得到函数g(x),求g(x)图象与x轴的正半轴、直线x=
π
2
所围成图形的面积.

查看答案和解析>>

设函数
(Ⅰ)写出函数的最小正周期及单调递减区间;
(Ⅱ)当x∈[]时,函数f(x)的最大值与最小值的和为,求f(x)的解析式;
(Ⅲ)将满足(Ⅱ)的函数f(x)的图象向右平移个单位,纵坐标不变横坐标变为原来的2倍,再向下平移,得到函数g(x),求g(x)图象与x轴的正半轴、直线所围成图形的面积.

查看答案和解析>>

设函数
(Ⅰ)写出函数的最小正周期及单调递减区间;
(Ⅱ)当x∈[]时,函数f(x)的最大值与最小值的和为,求f(x)的解析式;
(Ⅲ)将满足(Ⅱ)的函数f(x)的图象向右平移个单位,纵坐标不变横坐标变为原来的2倍,再向下平移,得到函数g(x),求g(x)图象与x轴的正半轴、直线所围成图形的面积.

查看答案和解析>>

设函数f(x)=
3
sinxcosx+cos2x+a

(Ⅰ)写出函数的最小正周期及单调递减区间;
(Ⅱ)当x∈[-
π
6
π
3
]时,函数f(x)的最大值与最小值的和为
3
2
,求f(x)的解析式;
(Ⅲ)将满足(Ⅱ)的函数f(x)的图象向右平移
π
12
个单位,纵坐标不变横坐标变为原来的2倍,再向下平移
1
2
,得到函数g(x),求g(x)图象与x轴的正半轴、直线x=
π
2
所围成图形的面积.

查看答案和解析>>

将函数y=f(x)的图象向左平移1个单位,再纵坐标不变,横坐标伸长到原来的
π
3
倍,然后再向上平移1个单位,得到函数y=
3
sinx
的图象.
(1)求y=f(x)的最小正周期和单调递增区间;
(2)若函数y=g(x)与y=f(x)的图象关于直线x=2对称,求当x∈[0,1]时,函数y=g(x)的最小值和最大值.

查看答案和解析>>


同步练习册答案