在△ABC中,由正弦定理得=,设= 查看更多

 

题目列表(包括答案和解析)

给出问题:已知△ABC满足a·cosA=b·cosB,试判断△ABC的形状,某学生的解答如下:

故△ABC事直角三角形.

(ii)设△ABC外接圆半径为R,由正弦定理可得,原式等价于

故△ABC是等腰三角形.

综上可知,△ABC是等腰直角三角形.

请问:该学生的解答是否正确?若正确,请在下面横线中写出解题过程中主要用到的思想方法;若不正确,请在下面横线中写出你认为本题正确的结果________.

查看答案和解析>>

给出问题:已知ΔABC满足a·cosA=b·cosB,试判断ΔABC的形状,某学生的解答如下:

故ΔABC事直角三角形.

(ii)设ΔABC外接圆半径为R,由正弦定理可得,原式等价于

故ΔABC是等腰三角形.

综上可知,ΔABC是等腰直角三角形.

请问:该学生的解答是否正确?若正确,请在下面横线中写出解题过程中主要用到的思想方法;若不正确,请在下面横线中写出你认为本题正确的结果________.

查看答案和解析>>

在△ABC中,角A、B、C的对边分别为a、b、c,向量=(sinA,b+c),=(a-c,sinC-sinB),满足=

(Ⅰ)求角B的大小;

(Ⅱ)设=(sin(C+),), =(2k,cos2A) (k>1),  有最大值为3,求k的值.

【解析】本试题主要考查了向量的数量积和三角函数,以及解三角形的综合运用

第一问中由条件|p +q |=| p -q |,两边平方得p·q=0,又

p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,

根据正弦定理,可化为a(a-c)+(b+c)(c-b)=0,

,又由余弦定理=2acosB,所以cosB=,B=

第二问中,m=(sin(C+),),n=(2k,cos2A) (k>1),m·n=2ksin(C+)+cos2A=2ksin(C+B) +cos2A

=2ksinA+-=-+2ksinA+=-+ (k>1).

而0<A<,sinA∈(0,1],故当sin=1时,m·n取最大值为2k-=3,得k=.

 

查看答案和解析>>


同步练习册答案