题目列表(包括答案和解析)
已知是公差为d的等差数列,是公比为q的等比数列
(Ⅰ)若 ,是否存在,有?请说明理由;
(Ⅱ)若(a、q为常数,且aq0)对任意m存在k,有,试求a、q满足的充要条件;
(Ⅲ)若试确定所有的p,使数列中存在某个连续p项的和式数列中的一项,请证明.
【解析】第一问中,由得,整理后,可得、,为整数不存在、,使等式成立。
(2)中当时,则
即,其中是大于等于的整数
反之当时,其中是大于等于的整数,则,
显然,其中
、满足的充要条件是,其中是大于等于的整数
(3)中设当为偶数时,式左边为偶数,右边为奇数,
当为偶数时,式不成立。由式得,整理
当时,符合题意。当,为奇数时,
结合二项式定理得到结论。
解(1)由得,整理后,可得、,为整数不存在、,使等式成立。
(2)当时,则即,其中是大于等于的整数反之当时,其中是大于等于的整数,则,
显然,其中
、满足的充要条件是,其中是大于等于的整数
(3)设当为偶数时,式左边为偶数,右边为奇数,
当为偶数时,式不成立。由式得,整理
当时,符合题意。当,为奇数时,
由,得
当为奇数时,此时,一定有和使上式一定成立。当为奇数时,命题都成立
已知数列是各项均不为0的等差数列,公差为d,为其前n项和,且满足,.数列满足,,为数列的前n项和.
(1)求数列的通项公式和数列的前n项和;
(2)若对任意的,不等式恒成立,求实数的取值范围;
(3)是否存在正整数,使得成等比数列?若存在,求出所有的值;若不存在,请说明理由.
【解析】第一问利用在中,令n=1,n=2,
得 即
解得,, [
又时,满足,
,
第二问,①当n为偶数时,要使不等式恒成立,即需不等式恒成立.
,等号在n=2时取得.
此时 需满足.
②当n为奇数时,要使不等式恒成立,即需不等式恒成立.
是随n的增大而增大, n=1时取得最小值-6.
此时 需满足.
第三问,
若成等比数列,则,
即.
由,可得,即,
.
(1)(法一)在中,令n=1,n=2,
得 即
解得,, [
又时,满足,
,
.
(2)①当n为偶数时,要使不等式恒成立,即需不等式恒成立.
,等号在n=2时取得.
此时 需满足.
②当n为奇数时,要使不等式恒成立,即需不等式恒成立.
是随n的增大而增大, n=1时取得最小值-6.
此时 需满足.
综合①、②可得的取值范围是.
(3),
若成等比数列,则,
即.
由,可得,即,
.
又,且m>1,所以m=2,此时n=12.
因此,当且仅当m=2, n=12时,数列中的成等比数列
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com