C. D. (一)必做题(9~ 12题) 查看更多

 

题目列表(包括答案和解析)

(实验班必做题)
(1)
1
2sin170°
-2sin70°
=
 

(2)若
π
4
<x<
π
2,
则函数y=tan2xtan3x的最大值为
 

(3)已知f(x)=2sin(x+
θ
2
)cos(x+
θ
2
)+2
3
cos2(x+
θ
2
)-
3
,若0≤θ≤π,使函数f(x)为偶函数的θ为
 

A、
π
6
   B、
π
4
   C、
π
3
    D、
π
2

查看答案和解析>>

二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.

(一)必做题(9~13题)

9.如图1是一个空间几何体的三视图,则该几何体的体积为     

 

查看答案和解析>>

(实验班必做题)
(1)数学公式=________;
(2)若数学公式则函数y=tan2xtan3x的最大值为________;
(3)已知f(x)=2sin(x+数学公式)cos(x+数学公式)+2数学公式cos2(x+数学公式)-数学公式,若0≤θ≤π,使函数f(x)为偶函数的θ为________
A、数学公式  B、数学公式  C、数学公式  D、数学公式

查看答案和解析>>

(2011•江苏二模)必做题
当n≥1,n∈N*时,
(1)求证:Cn1+2Cn2x+3Cn3x2+…+(n-1)Cnn-1xn-2=n(1+x)n-1
(2)求和:12Cn1+22Cn2+32Cn3+…+(n-1)2Cnn-1+n2Cnn

查看答案和解析>>

必做题
当n≥1,n∈N*时,
(1)求证:Cn1+2Cn2x+3Cn3x2+…+(n-1)Cnn-1xn-2=n(1+x)n-1
(2)求和:12Cn1+22Cn2+32Cn3+…+(n-1)2Cnn-1+n2Cnn

查看答案和解析>>

说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.

      2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.

      3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.

4.只给整数分数,选择题和填空题不给中间分.

一、选择题:本大题主要考查基本知识和基本运算.共10小题,每小题5分,满分50分.

   

题号

1

2

3

4

5

6

7

8

答案

C

A

B

A

B

C

C

D

 

二、填空题:本大题主要考查基本知识和基本运算.本大题共7小题,考生作答6小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.

9.    10.        11.         12.  

13.           14.     15.2

说明:第14题答案可以有多种形式,如可答Z等, 均给满分.

三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.

16.(本小题满分12分)          

解:(1)∵

                                                    ……2分

                                              ……4分     

             .                                             ……6分

.                                                     ……8分

(2) 当时, 取得最大值, 其值为2 .                    ……10分

此时,即Z.                      ……12分

 

17.(本小题满分12分)

解:(1)设“这箱产品被用户接收”为事件.        ……3分   

即这箱产品被用户接收的概率为.                             ……4分    

(2)的可能取值为1,2,3.                                       ……5分   

=,                                                

=,                                            

=,                                     ……8分     

的概率分布列为:

1

2

3

……10分

=.                          ……12分

 

18.(本小题满分14分)

解:(1)∵点A、D分别是的中点,

.                                     ……2分                   

∴∠=90º.

.

,                                                   

,

⊥平面.                                         ……4分     

平面,

.                                             ……6分      

(2)法1:取的中点,连结

,

.                                      

,

平面.

平面,

.                      ……8分

平面.

平面,

.

∴∠是二面角的平面角.                            ……10分 

在Rt△中,

在Rt△中,

.                             ……12分          

∴ 二面角的平面角的余弦值是.                ……14分         

 

法2:建立如图所示的空间直角坐标系

(-1,0,0),(-2,1,0),(0,0,1).

=(-1,1,0),=(1,0,1),      ……8分

设平面的法向量为=(x,y,z),则:

,                     ……10分

,得

=(1,1,-1).

显然,是平面的一个法向量,=().  ……12分            

∴cos<>=. 

∴二面角的平面角的余弦值是.                 ……14分        

 

 

 

 

19. (本小题满分14分)

解:(1)依题意知,               ……2分                                       

      ∵,

.                      ……4分                 

∴所求椭圆的方程为.                       ……6分              

(2)∵ 点关于直线的对称点为

                          ……8分                  

解得:.                 ……10分                

 

.                                     ……12分            

∵ 点在椭圆:上,

, 则.

的取值范围为.                ……14分                 

20.(本小题满分14分)

解:(1)数表中前行共有个数,

即第i行的第一个数是,                         ……2分             

         ∴

=2010,

∴ i=11.                                              ……4分       

,    

解得.                          ……6分            

(2)∵

.                                    ……7分     

.                   

时, , 则;

时, , 则;

时, , 则;

时, 猜想: .                         ……11分        

下面用数学归纳法证明猜想正确.

① 当时,, 即成立;

② 假设当时, 猜想成立, 即,

  则,

,

.

即当时,猜想也正确.

由①、②得当时, 成立.

时,.                             ……13分              

综上所述, 当时, ; 当时,.  ……14分       

另法( 证明当时, 可用下面的方法):

时, C + C + C+ C

                    

                    

                     .

            

 

21. (本小题满分14分)

解:(1)当时,

.                    

       令=0, 得 .                    ……2分                                  

时,, 则上单调递增;

时,, 则上单调递减;

时,, 上单调递增.       ……4分             

∴ 当时, 取得极大值为;

时, 取得极小值为.       ……6分

(2) ∵ =

∴△= =  .                             

① 若a≥1,则△≤0,                           ……7分              

≥0在R上恒成立,

∴ f(x)在R上单调递增 .                                                    

∵f(0),                  

∴当a≥1时,函数f(x)的图象与x轴有且只有一个交点.     ……9分  

② 若a<1,则△>0,

= 0有两个不相等的实数根,不妨设为x1,x2,(x1<x2).

∴x1+x2 = 2,x1x2 = a.  

变化时,的取值情况如下表:                       

x

x1

(x1,x2

x2

+

0

0

+

f(x)

极大值

 

极小值

 

                                      ……11分

,

.


同步练习册答案