②能量转化特点:其它能电能内能 查看更多

 

题目列表(包括答案和解析)

选做题:本题包括A、B、C三小题,请选定其中两题,并在相应的答题区域内作答。

若三题都做,则按A、B两题评分。

A.(选修模块3—3)

12下列说法正确的是         

       A.布朗运动不是液体分子的运动,但它可以说明分子在永不停息地做无规则运动

       B.液体的内部分子间比液体表面层的分子间有更大的分子势能

       C.分了了间距离增大时,分子间的引力和斥力都减小,它们的合力也减小

       D.液晶既有液体的流动性。又具有单晶体的各向异性

   (2)如图所示,气缸与活塞封闭了一定质量的理想气体。气缸和活塞间无摩擦,且均可与外界进行热交换,若外界是环境的温度缓慢升高,则封闭气体的体积将        (增大、减小、不变),同时      (吸热、放热、既不吸热也不放热)

   (3)目前专家们正在研究二拉化碳的深海处理技术。实验发现,在水深300m处,二氧化碳将变成凝胶状态。当水深超过2500m时,二氧化碳会浓缩成近似固体的硬胶体,可看成分子间是紧密排列的。已知二氧化碳的摩尔质量为M,阿伏加德罗常数为N,每个二氧化碳分子体积为V0,设在某状态下二氧化碳气体的密谋为ρ,则在该状态下为V的二氧化碳气体变成固体体积为多少?

B.(选修模块3—4)

   (1)下列说法中正确的是           

       A.水面上的油膜在阳光照射下会呈现彩色,这是由于光的干涉造成的色散现象

       B.声波与无线电波一样,都是机械振动在介质中的传播

       C.用激光读取光盘上记录的信息是利用激光平行度好的特点

       D.当观察者向静止的声源运动时,接收到的声音频率低于声源发出的频率

   (2)一简谐横波沿x轴正方向传播,在t=0时刻的波形如图所示。已知介质中质点P的振动周期为2s,则该波传播速度为       m/s,此时P点振动方向为      (y轴正方向、y轴负方向)

   (3)如图所示,真空中平行玻璃砖折射率为,下表面镀有反射膜,一束单色光与界面成角斜射到玻璃砖表面上,最后在玻璃砖的右侧面竖直光屏上出现了两个光点A和B,相距h=2.0m,求玻璃砖的厚度d。

C.(选修模块3—5)

   (1)下列关于的代物理知识说法中正确的是         

       A.将放射性元素掺杂到其它稳定元素中,并降低其温度,它的半衰期将发生改变

       B.α粒子散射实验中少数α粒子发生较大的偏转是卢瑟福猜想原子核式结构模型的主要依据

       C.天然放射现象的发明说明了原子核有复杂的结构

       D.用质子流工作的显微镜比用相同速度的电子流工作的显微镜分辨率低

   (2)氢原子的能级如图所示,有一群处于n=4能级的氢原了了,这群氢原子最多能发出        种谱线,发出的光子照射某金属能产生光电效应现象,则该金属逸出不应超过     eV。

   (3)近年来,国际热核变实验堆计划取得了重大进展,它利用的核反应方程是

        迎面碰撞,初速度大小分别为质量分别为,反应后的速度大小为v3,方向与的运动方向相同,求中子的速度(选取m1的运动方向为正方向,不计释放的光子的动量,不考虑相对论效率)。

查看答案和解析>>

第九部分 稳恒电流

第一讲 基本知识介绍

第八部分《稳恒电流》包括两大块:一是“恒定电流”,二是“物质的导电性”。前者是对于电路的外部计算,后者则是深入微观空间,去解释电流的成因和比较不同种类的物质导电的情形有什么区别。

应该说,第一块的知识和高考考纲对应得比较好,深化的部分是对复杂电路的计算(引入了一些新的处理手段)。第二块虽是全新的内容,但近几年的考试已经很少涉及,以至于很多奥赛培训资料都把它删掉了。鉴于在奥赛考纲中这部分内容还保留着,我们还是想粗略地介绍一下。

一、欧姆定律

1、电阻定律

a、电阻定律 R = ρ

b、金属的电阻率 ρ = ρ0(1 + αt)

2、欧姆定律

a、外电路欧姆定律 U = IR ,顺着电流方向电势降落

b、含源电路欧姆定律

在如图8-1所示的含源电路中,从A点到B点,遵照原则:①遇电阻,顺电流方向电势降落(逆电流方向电势升高)②遇电源,正极到负极电势降落,负极到正极电势升高(与电流方向无关),可以得到以下关系

UA ? IR ? ε ? Ir = UB 

这就是含源电路欧姆定律。

c、闭合电路欧姆定律

在图8-1中,若将A、B两点短接,则电流方向只可能向左,含源电路欧姆定律成为

UA + IR ? ε + Ir = UB = UA

 ε = IR + Ir ,或 I = 

这就是闭合电路欧姆定律。值得注意的的是:①对于复杂电路,“干路电流I”不能做绝对的理解(任何要考察的一条路均可视为干路);②电源的概念也是相对的,它可以是多个电源的串、并联,也可以是电源和电阻组成的系统;③外电阻R可以是多个电阻的串、并联或混联,但不能包含电源。

二、复杂电路的计算

1、戴维南定理:一个由独立源、线性电阻、线性受控源组成的二端网络,可以用一个电压源和电阻串联的二端网络来等效。(事实上,也可等效为“电流源和电阻并联的的二端网络”——这就成了诺顿定理。)

应用方法:其等效电路的电压源的电动势等于网络的开路电压,其串联电阻等于从端钮看进去该网络中所有独立源为零值时的等效电阻。

2、基尔霍夫(克希科夫)定律

a、基尔霍夫第一定律:在任一时刻流入电路中某一分节点的电流强度的总和,等于从该点流出的电流强度的总和。

例如,在图8-2中,针对节点P ,有

I2 + I3 = I1 

基尔霍夫第一定律也被称为“节点电流定律”,它是电荷受恒定律在电路中的具体体现。

对于基尔霍夫第一定律的理解,近来已经拓展为:流入电路中某一“包容块”的电流强度的总和,等于从该“包容块”流出的电流强度的总和。

b、基尔霍夫第二定律:在电路中任取一闭合回路,并规定正的绕行方向,其中电动势的代数和,等于各部分电阻(在交流电路中为阻抗)与电流强度乘积的代数和。

例如,在图8-2中,针对闭合回路① ,有

ε3 ? ε2 = I3 ( r3 + R2 + r2 ) ? I2R2 

基尔霍夫第二定律事实上是含源部分电路欧姆定律的变体(☆同学们可以列方程 UP = … = UP得到和上面完全相同的式子)。

3、Y?Δ变换

在难以看清串、并联关系的电路中,进行“Y型?Δ型”的相互转换常常是必要的。在图8-3所示的电路中

☆同学们可以证明Δ→ Y的结论…

Rc = 

Rb = 

Ra = 

Y→Δ的变换稍稍复杂一些,但我们仍然可以得到

R1 = 

R2 = 

R3 = 

三、电功和电功率

1、电源

使其他形式的能量转变为电能的装置。如发电机、电池等。发电机是将机械能转变为电能;干电池、蓄电池是将化学能转变为电能;光电池是将光能转变为电能;原子电池是将原子核放射能转变为电能;在电子设备中,有时也把变换电能形式的装置,如整流器等,作为电源看待。

电源电动势定义为电源的开路电压,内阻则定义为没有电动势时电路通过电源所遇到的电阻。据此不难推出相同电源串联、并联,甚至不同电源串联、并联的时的电动势和内阻的值。

例如,电动势、内阻分别为ε1 、r1和ε2 、r2的电源并联,构成的新电源的电动势ε和内阻r分别为(☆师生共同推导…)

ε = 

r = 

2、电功、电功率

电流通过电路时,电场力对电荷作的功叫做电功W。单位时间内电场力所作的功叫做电功率P 。

计算时,只有W = UIt和P = UI是完全没有条件的,对于不含源的纯电阻,电功和焦耳热重合,电功率则和热功率重合,有W = I2Rt = t和P = I2R = 

对非纯电阻电路,电功和电热的关系依据能量守恒定律求解。 

四、物质的导电性

在不同的物质中,电荷定向移动形成电流的规律并不是完全相同的。

1、金属中的电流

即通常所谓的不含源纯电阻中的电流,规律遵从“外电路欧姆定律”。

2、液体导电

能够导电的液体叫电解液(不包括液态金属)。电解液中离解出的正负离子导电是液体导电的特点(如:硫酸铜分子在通常情况下是电中性的,但它在溶液里受水分子的作用就会离解成铜离子Cu2+和硫酸根离子S,它们在电场力的作用下定向移动形成电流)。

在电解液中加电场时,在两个电极上(或电极旁)同时产生化学反应的过程叫作“电解”。电解的结果是在两个极板上(或电极旁)生成新的物质。

液体导电遵从法拉第电解定律——

法拉第电解第一定律:电解时在电极上析出或溶解的物质的质量和电流强度、跟通电时间成正比。表达式:m = kIt = KQ (式中Q为析出质量为m的物质所需要的电量;K为电化当量,电化当量的数值随着被析出的物质种类而不同,某种物质的电化当量在数值上等于通过1C电量时析出的该种物质的质量,其单位为kg/C。)

法拉第电解第二定律:物质的电化当量K和它的化学当量成正比。某种物质的化学当量是该物质的摩尔质量M(克原子量)和它的化合价n的比值,即 K =  ,而F为法拉第常数,对任何物质都相同,F = 9.65×104C/mol 。

将两个定律联立可得:m = Q 。

3、气体导电

气体导电是很不容易的,它的前提是气体中必须出现可以定向移动的离子或电子。按照“载流子”出现方式的不同,可以把气体放电分为两大类——

a、被激放电

在地面放射性元素的辐照以及紫外线和宇宙射线等的作用下,会有少量气体分子或原子被电离,或在有些灯管内,通电的灯丝也会发射电子,这些“载流子”均会在电场力作用下产生定向移动形成电流。这种情况下的电流一般比较微弱,且遵从欧姆定律。典型的被激放电情形有

b、自激放电

但是,当电场足够强,电子动能足够大,它们和中性气体相碰撞时,可以使中性分子电离,即所谓碰撞电离。同时,在正离子向阴极运动时,由于以很大的速度撞到阴极上,还可能从阴极表面上打出电子来,这种现象称为二次电子发射。碰撞电离和二次电子发射使气体中在很短的时间内出现了大量的电子和正离子,电流亦迅速增大。这种现象被称为自激放电。自激放电不遵从欧姆定律。

常见的自激放电有四大类:辉光放电、弧光放电、火花放电、电晕放电。

4、超导现象

据金属电阻率和温度的关系,电阻率会随着温度的降低和降低。当电阻率降为零时,称为超导现象。电阻率为零时对应的温度称为临界温度。超导现象首先是荷兰物理学家昂尼斯发现的。

超导的应用前景是显而易见且相当广阔的。但由于一般金属的临界温度一般都非常低,故产业化的价值不大,为了解决这个矛盾,科学家们致力于寻找或合成临界温度比较切合实际的材料就成了当今前沿科技的一个热门领域。当前人们的研究主要是集中在合成材料方面,临界温度已经超过100K,当然,这个温度距产业化的期望值还很远。

5、半导体

半导体的电阻率界于导体和绝缘体之间,且ρ

查看答案和解析>>

第六部分 振动和波

第一讲 基本知识介绍

《振动和波》的竞赛考纲和高考要求有很大的不同,必须做一些相对详细的补充。

一、简谐运动

1、简谐运动定义:= -k             

凡是所受合力和位移满足①式的质点,均可称之为谐振子,如弹簧振子、小角度单摆等。

谐振子的加速度:= -

2、简谐运动的方程

回避高等数学工具,我们可以将简谐运动看成匀速圆周运动在某一条直线上的投影运动(以下均看在x方向的投影),圆周运动的半径即为简谐运动的振幅A 。

依据:x = -mω2Acosθ= -mω2

对于一个给定的匀速圆周运动,m、ω是恒定不变的,可以令:

2 = k 

这样,以上两式就符合了简谐运动的定义式①。所以,x方向的位移、速度、加速度就是简谐运动的相关规律。从图1不难得出——

位移方程: = Acos(ωt + φ)                                        ②

速度方程: = -ωAsin(ωt +φ)                                     ③

加速度方程:= -ω2A cos(ωt +φ)                                   ④

相关名词:(ωt +φ)称相位,φ称初相。

运动学参量的相互关系:= -ω2

A = 

tgφ= -

3、简谐运动的合成

a、同方向、同频率振动合成。两个振动x1 = A1cos(ωt +φ1)和x2 = A2cos(ωt +φ2) 合成,可令合振动x = Acos(ωt +φ) ,由于x = x1 + x2 ,解得

A =  ,φ= arctg 

显然,当φ2-φ1 = 2kπ时(k = 0,±1,±2,…),合振幅A最大,当φ2-φ1 = (2k + 1)π时(k = 0,±1,±2,…),合振幅最小。

b、方向垂直、同频率振动合成。当质点同时参与两个垂直的振动x = A1cos(ωt + φ1)和y = A2cos(ωt + φ2)时,这两个振动方程事实上已经构成了质点在二维空间运动的轨迹参数方程,消去参数t后,得一般形式的轨迹方程为

+-2cos(φ2-φ1) = sin22-φ1)

显然,当φ2-φ1 = 2kπ时(k = 0,±1,±2,…),有y = x ,轨迹为直线,合运动仍为简谐运动;

当φ2-φ1 = (2k + 1)π时(k = 0,±1,±2,…),有+= 1 ,轨迹为椭圆,合运动不再是简谐运动;

当φ2-φ1取其它值,轨迹将更为复杂,称“李萨如图形”,不是简谐运动。

c、同方向、同振幅、频率相近的振动合成。令x1 = Acos(ω1t + φ)和x2 = Acos(ω2t + φ) ,由于合运动x = x1 + x2 ,得:x =(2Acost)cos(t +φ)。合运动是振动,但不是简谐运动,称为角频率为的“拍”现象。

4、简谐运动的周期

由②式得:ω=  ,而圆周运动的角速度和简谐运动的角频率是一致的,所以

T = 2π                                                      

5、简谐运动的能量

一个做简谐运动的振子的能量由动能和势能构成,即

mv2 + kx2 = kA2

注意:振子的势能是由(回复力系数)k和(相对平衡位置位移)x决定的一个抽象的概念,而不是具体地指重力势能或弹性势能。当我们计量了振子的抽象势能后,其它的具体势能不能再做重复计量。

6、阻尼振动、受迫振动和共振

和高考要求基本相同。

二、机械波

1、波的产生和传播

产生的过程和条件;传播的性质,相关参量(决定参量的物理因素)

2、机械波的描述

a、波动图象。和振动图象的联系

b、波动方程

如果一列简谐波沿x方向传播,振源的振动方程为y = Acos(ωt + φ),波的传播速度为v ,那么在离振源x处一个振动质点的振动方程便是

y = Acos〔ωt + φ - ·2π〕= Acos〔ω(t - )+ φ〕

这个方程展示的是一个复变函数。对任意一个时刻t ,都有一个y(x)的正弦函数,在x-y坐标下可以描绘出一个瞬时波形。所以,称y = Acos〔ω(t - )+ φ〕为波动方程。

3、波的干涉

a、波的叠加。几列波在同一介质种传播时,能独立的维持它们的各自形态传播,在相遇的区域则遵从矢量叠加(包括位移、速度和加速度的叠加)。

b、波的干涉。两列波频率相同、相位差恒定时,在同一介质中的叠加将形成一种特殊形态:振动加强的区域和振动削弱的区域稳定分布且彼此隔开。

我们可以用波程差的方法来讨论干涉的定量规律。如图2所示,我们用S1和S2表示两个波源,P表示空间任意一点。

当振源的振动方向相同时,令振源S1的振动方程为y1 = A1cosωt ,振源S1的振动方程为y2 = A2cosωt ,则在空间P点(距S1为r1 ,距S2为r2),两振源引起的分振动分别是

y1′= A1cos〔ω(t ? )〕

y2′= A2cos〔ω(t ? )〕

P点便出现两个频率相同、初相不同的振动叠加问题(φ1 =  ,φ2 = ),且初相差Δφ= (r2 – r1)。根据前面已经做过的讨论,有

r2 ? r1 = kλ时(k = 0,±1,±2,…),P点振动加强,振幅为A1 + A2 

r2 ? r1 =(2k ? 1)时(k = 0,±1,±2,…),P点振动削弱,振幅为│A1-A2│。

4、波的反射、折射和衍射

知识点和高考要求相同。

5、多普勒效应

当波源或者接受者相对与波的传播介质运动时,接收者会发现波的频率发生变化。多普勒效应的定量讨论可以分为以下三种情况(在讨论中注意:波源的发波频率f和波相对介质的传播速度v是恒定不变的)——

a、只有接收者相对介质运动(如图3所示)

设接收者以速度v1正对静止的波源运动。

如果接收者静止在A点,他单位时间接收的波的个数为f ,

当他迎着波源运动时,设其在单位时间到达B点,则= v1 ,、

在从A运动到B的过程中,接收者事实上“提前”多接收到了n个波

n = 

显然,在单位时间内,接收者接收到的总的波的数目为:f + n = f ,这就是接收者发现的频率f。即

f

显然,如果v1背离波源运动,只要将上式中的v1代入负值即可。如果v1的方向不是正对S ,只要将v1出正对的分量即可。

b、只有波源相对介质运动(如图4所示)

设波源以速度v2正对静止的接收者运动。

如果波源S不动,在单位时间内,接收者在A点应接收f个波,故S到A的距离:= fλ 

在单位时间内,S运动至S′,即= v2 。由于波源的运动,事实造成了S到A的f个波被压缩在了S′到A的空间里,波长将变短,新的波长

λ′= 

而每个波在介质中的传播速度仍为v ,故“被压缩”的波(A接收到的波)的频率变为

f2 = 

当v2背离接收者,或有一定夹角的讨论,类似a情形。

c、当接收者和波源均相对传播介质运动

当接收者正对波源以速度v1(相对介质速度)运动,波源也正对接收者以速度v2(相对介质速度)运动,我们的讨论可以在b情形的过程上延续…

f3 =  f2 = 

关于速度方向改变的问题,讨论类似a情形。

6、声波

a、乐音和噪音

b、声音的三要素:音调、响度和音品

c、声音的共鸣

第二讲 重要模型与专题

一、简谐运动的证明与周期计算

物理情形:如图5所示,将一粗细均匀、两边开口的U型管固定,其中装有一定量的水银,汞柱总长为L 。当水银受到一个初始的扰动后,开始在管中振动。忽略管壁对汞的阻力,试证明汞柱做简谐运动,并求其周期。

模型分析:对简谐运动的证明,只要以汞柱为对象,看它的回复力与位移关系是否满足定义式①,值得注意的是,回复力系指振动方向上的合力(而非整体合力)。当简谐运动被证明后,回复力系数k就有了,求周期就是顺理成章的事。

本题中,可设汞柱两端偏离平衡位置的瞬时位移为x 、水银密度为ρ、U型管横截面积为S ,则次瞬时的回复力

ΣF = ρg2xS = x

由于L、m为固定值,可令: = k ,而且ΣF与x的方向相反,故汞柱做简谐运动。

周期T = 2π= 2π

答:汞柱的周期为2π 。

学生活动:如图6所示,两个相同的柱形滚轮平行、登高、水平放置,绕各自的轴线等角速、反方向地转动,在滚轮上覆盖一块均质的木板。已知两滚轮轴线的距离为L 、滚轮与木板之间的动摩擦因素为μ、木板的质量为m ,且木板放置时,重心不在两滚轮的正中央。试证明木板做简谐运动,并求木板运动的周期。

思路提示:找平衡位置(木板重心在两滚轮中央处)→ú力矩平衡和Σ?F6= 0结合求两处弹力→ú求摩擦力合力…

答案:木板运动周期为2π 。

巩固应用:如图7所示,三根长度均为L = 2.00m地质量均匀直杆,构成一正三角形框架ABC,C点悬挂在一光滑水平轴上,整个框架可绕转轴转动。杆AB是一导轨,一电动松鼠可在导轨上运动。现观察到松鼠正在导轨上运动,而框架却静止不动,试讨论松鼠的运动是一种什么样的运动。

解说:由于框架静止不动,松鼠在竖直方向必平衡,即:松鼠所受框架支持力等于松鼠重力。设松鼠的质量为m ,即:

N = mg                            ①

再回到框架,其静止平衡必满足框架所受合力矩为零。以C点为转轴,形成力矩的只有松鼠的压力N、和松鼠可能加速的静摩擦力f ,它们合力矩为零,即:

MN = Mf

现考查松鼠在框架上的某个一般位置(如图7,设它在导轨方向上距C点为x),上式即成:

N·x = f·Lsin60°                 ②

解①②两式可得:f = x ,且f的方向水平向左。

根据牛顿第三定律,这个力就是松鼠在导轨方向上的合力。如果我们以C在导轨上的投影点为参考点,x就是松鼠的瞬时位移。再考虑到合力与位移的方向因素,松鼠的合力与位移满足关系——

= -k

其中k =  ,对于这个系统而言,k是固定不变的。

显然这就是简谐运动的定义式。

答案:松鼠做简谐运动。

评说:这是第十三届物理奥赛预赛试题,问法比较模糊。如果理解为定性求解,以上答案已经足够。但考虑到原题中还是有定量的条件,所以做进一步的定量运算也是有必要的。譬如,我们可以求出松鼠的运动周期为:T = 2π = 2π = 2.64s 。

二、典型的简谐运动

1、弹簧振子

物理情形:如图8所示,用弹性系数为k的轻质弹簧连着一个质量为m的小球,置于倾角为θ

查看答案和解析>>

 

典型例题

[1]  解析:对系统进行整体分析,受力分析如图1―2:

由平衡条件有:

由此解得 

[2]  解析: (1)设t1t2为声源S发出两个信号的时刻,为观察者接收到两个信号的时刻.则第一个信号经过时间被观察者A接收到,第二个信号经过()时刻被观察者A接收到,且

 

 

 

 

 

 

 

设声源发出第一个信号时,SA两点间的距离为L,两个声信号从声源传播到观察者的过程中,它们的运动的距离关系如图所示,

可得

由以上各式解得

(2)设声源发出声波的振动周期为T,这样,由以上结论,观察者接收到的声波振动的周期T′,

由此可得,观察者接收到的声波频率与声源发出声波频率间的关系为

[3] 解答:根据题意作图1―4.

对这两个天体而言,它们的运动方程分别为   ①

   ②

以及       ③

由以上三式解得

r1r2的表达式分别代①和②式,

可得

[4]  解答:(1)AB两球以相同的初速度v0,从同一点水平抛出,可以肯定它们沿同一轨道运动.

作细线刚被拉直时刻AB球位置示意图1―5.

根据题意可知:

A球运动时间为t,则B球运动时间为t-0.8,由于AB球在竖直方向上均作自由落体运动,所以有

由此解得t =1s.

(2)细线刚被拉直时,

AB球的水平位移分别为

[5]  解答:(1)A球通过最低点时,作用于环形圆管的压力竖直向下,根据牛顿第三定律,A球受到竖直向上的支持力N1,由牛顿第二定律,有:

     ①

由题意知,A球通过最低点时,B球恰好通过最高点,而且该时刻AB两球作用于圆管的合力为零;可见B球作用于圆管的压力肯定竖直向上,根据牛顿第三定律,圆管对B球的反作用力N2竖直向下;假设B球通过最高点时的速度为v,则B球在该时刻的运动方程为    ②

由题意N1=N2     ③

     ④

B球运用机械能守恒定律     ⑤

解得     ⑥

⑥式代入④式可得:

[6]  解答:火箭上升到最高点的运动分为两个阶段:匀加速上升阶段和竖直上抛阶段.

地面上的摆钟对两个阶段的计时为

即总的读数(计时)为t =t1t2=360(s)

放在火箭中的摆钟也分两个阶段计时.

第一阶段匀加速上升,a=8g,钟摆周期

其钟面指示时间

第二阶段竖直上抛,为匀减速直线运动,加速度竖直向下,a=g,完全失重,摆钟不“走”,计时.可见放在火箭中的摆钟总计时为

综上所述,火箭中的摆钟比地面上的摆钟读数少了

[7]  解答:在情形(1)中,滑块相对于桌面以速度v0=0.1m/s向右做匀速运动,放手后,木板由静止开始向右做匀加速运动.

经时间t,木板的速度增大到v0=0.1m/s,

在5s内滑块相对于桌面向右的位移大小为S1=v0t=0.5m.

而木板向右相对于桌面的位移为

可见,滑块在木板上向右只滑行了S1S2=0.25m,即达到相对静止状态,随后,它们一起以共同速度v0向右做匀速直线运动.只要线足够长,桌上的柱子不阻挡它们运动,滑块就到不了木板的右端.

在情形(2)中,滑块与木板组成一个系统,放手后滑块相树于木板的速度仍为v0,滑块到达木板右端历时

[8]  解答:以m表示球的质量,F表示两球相互作用的恒定斥力,l表示两球间的原始距离.A球作初速度为v0的匀减速运动,B球作初速度为零的匀加速运动.在两球间距由l先减小,到又恢复到l的过程中,A球的运动路程为l1B球运动路程为l2,间距恢复到l时,A球速度为v1B球速度为v2

由动量守恒,有

由功能关系:A球      B球:

根据题意可知l1=l2

由上三式可得

v2=v0v1=0    即两球交换速度.

当两球速度相同时,两球间距最小,设两球速度相等时的速度为v

B球的速度由增加到v0花时间t0,即

解二:用牛顿第二定律和运动学公式.(略)

 

跟踪练习

1.C   提示:利用平衡条件.

2.(1)重物先向下做加速运动,后做减速运动,当重物速度为零时,下降的距离最大,设下降的最大距离为h

由机械能守恒定律得   解得

(2)系统处于平衡状态时,两小环的可能位置为

a.两小环同时位于大圆环的底端

b.两小环同时位于大圆环的顶端

c.两小环一个位于大圆环的顶端,另一个位于大圆环的底端

d.除上述三种情况外,根据对称性可知,系统如能平衡,则小圆环的位置一定关于大圆环竖直对称轴对称.设平衡时,两小圆环在大圆环竖直对称轴两侧角的位置上(如图).

对于重物m,受绳的拉力T与重力mg作用,有T=mg.对于小圆环,受到三个力的作用,水平绳的拉力T,竖直绳的拉力T,大圆环的支持力N.两绳的拉力沿大圆环切向的分力大小相等,方向相反

3.设测速仪扫描速度为v′,因P1P2在标尺上对应间隔为30小格,所以格/s.

测速仪发出超声波信号P1到接收P1的反射信号n1.从图B上可以看出,测速仪扫描12小格,所以测速仪从发出信号P1到接收其反射信号n1所经历时间

汽车接收到P1信号时与测速仪相距

同理,测速仪从发出信号P2到接收到其反射信号n2,测速仪扫描9小格,故所经历时间.汽车在接收到P2信号时与测速仪相距

所以,汽车在接收到P1P2两个信号的时间内前进的距离△S=S1S2=17m.

从图B可以看出,n1P2之间有18小格,所以,测速仪从接收反射信号n1到超声信号P2的时间间隔

所以汽车接收P1P2两个信号之间的时间间隔为

∴汽车速度m/s.

4.从B发出第一个超声波开始计时,经C车接收.故C车第一次接收超声波时与B距离

第二个超声波从发出至接收,经T+△T时间,C车第二车接收超声波时距BC车从接收第一个超声波到接收第二个超声波内前进S2S1,接收第一个超声波时刻,接收第二个超声波时刻为

所以接收第一和第二个超声波的时间间距为

故车速.车向右运动.

5.ACD

6.(1)根据动能定理,可求出卫星由近地点到远地点运动过程中,地球引力对卫星的功为

(2)由牛顿第二定律知   ∴

7.(1)建立如图所示坐标系,将v0g进行正交分解.

x方向,小球以为初速度作匀加速运动.

y方向,小球以为初速度,作类竖直上抛运动.

y方向的速度为零时,小球离斜面最远,由运动学公式

小球经时间t上升到最大高度,由

(2)

8.(1)设滑雪者质量为m,斜面与水平面夹角为,滑雪者滑行过程中克服摩擦力做功   ①

由动能定理    ②

离开B点时的速度     ③

(2)设滑雪者离开B点后落在台阶上

可解得 ④         此时必须满足  ⑤

时,滑雪者直接落到地面上,

可解得

9.AC

10.摆球先后以正方形的顶点为圆心,半径分别为R1=4aR2=3aR3=2aR4=a为半径各作四分之一圆周的圆运动.

当摆球从P点开始,沿半径R1=4a运动到最低点时的速度v1

根据动量定理  ①

当摆球开始以v1B点以半径R2=3a作圆周运动时,摆线拉力最大,为Tmax=7mg,这时摆球的运动方程为        ②

由此求得v0的最大许可值为

当摆球绕C点以半径R3=2a运动到最高点时,为确保沿圆周运动,

到达最高点时的速度(重力作向心力)

由动能定理

11.B

12.由题意知,周期为.波速

PQ两点距离相差次全振动所需时间即

13.ABC  开始时小车上的物体受弹簧水平向右的拉力为6N,水平向左的静摩擦力也为6N,合力为零.沿水平向右方向对小车施加以作用力,小车向右做加速运动时,车上的物体沿水平向右方向上的合力(F=ma)逐渐增大到8N后恒定.在此过程中向左的静摩擦力先减小,改变方向后逐渐增大到(向右的)2N而保持恒定;弹簧的拉力(大小、方向)始终没有变,物体与小车保持相对静止,小车上的物体不受摩擦力作用时,向右的加速度由弹簧的拉力提供:

14.(1)设物体与板的位移分别为SS,则由题意有    ①

    ②     解得:

(2)由

,故板与桌面之间的动摩擦因数

15.在0~10s内,物体的加速度(正向)

在10~14s内,物体的加速度 (反向)

由牛顿第二定律    ①              ② 

由此解得F=8.4N    =0.34

16.(1)依题意得=0,设小滑块在水平面上运动的加速度大小为a

由牛顿第二定律,,由运动学公式,解得

(2)滑块在水平面上运动时间为t1,由

在斜面上运动的时间

(3)若滑块在A点速度为v1=5m/s,则运动到B点的速度

即运动到B点后,小滑块将做平抛运动.

假设小滑块不会落到斜面上,则经过落到水平面上,

则水平位移

所以假设正确,即小滑块从A点运动到地面所需时间为

 

专题二  动量与机械能

 

典型例题

[1]  D

解析:本题辨析一对平衡力和一对作用力和反作用力的功、冲量.因为,一对平衡力大小相等、方向相反,作用在同一物体上,所以,同一段时间内,它们的冲量大小相等、方向相反,故不是相同的冲量,则①错误.如果在同一段时间内,一对平衡力做功,要么均为零(静止),要么大小相等符号相反(正功与负功),故②正确.至于一对作用力与反作用力,虽然两者大小相等,方向相反,但分别作用在两个不同物体上(对方物体),所以,即使在同样时间内,力的作用点的位移不是一定相等的(子弹穿木块中的一对摩擦力),则做功大小不一定相等.而且作功的正负号也不一定相反(点电荷间相互作用力、磁体间相互作用力的做功,都是同时做正功,或同时做负功.)因此③错误,④正确.综上所述,选项D正确.

【例2】  解析:(1)飞机达到最大速度时牵引力F与其所受阻力f 大小相等,

P=Fv

(2)航空母舰上飞机跑道的最小长度为s,由动能定理得

 将代入上式得

【例3】  解析:解法1(程序法):

选物体为研究对象,在t1时间内其受力情况如图①所示,选F的方向为正方向,根据牛顿第二定律,物体运动的加速度为

 

 

 

 

 

 

撤去F时物体的速度为v1=a1t1=2×6m/s=12m/s

撤去F后,物体做匀减速运动,其受力情况如图②所示,根据牛顿第二定律,其运动的加速度为

物体开始碰撞时的速度为v2=v1a2t2=[12+(-2)×2]m/s=8m/s.

再研究物体碰撞的过程,设竖直墙对物体的平均作用力为,其方向水平向左.若选水平向左为正方向,根据动量定理有

解得

解法2(全程考虑):取从物体开始运动到碰撞后反向弹回的全过程应用动量定理,并取F的方向为正方向,则

所以

点评:比较上述两种方法看出,当物体所受各力的作用时间不相同且间断作用时,应用动量定理解题对全程列式较简单,这时定理中的合外力的冲量可理解为整个运动过程中各力冲量的矢量和.此题应用牛顿第二定律和运动学公式较繁琐.

另外有些变力作用或曲线运动的题目用牛顿定律难以解决,应用动量定理解决可化难为易.

【例4】  解析:该题用守恒观点和转化观点分别解答如下:

解法一:(守恒观点)选小球为研究对象,设小球沿半径为R的轨道做匀速圆周运动的线速度为v0,根据牛顿第二定律有   ①

当剪断两物体之间的轻线后,轻线对小球的拉力减小,不足以维持小球在半径为R的轨道上继续做匀速圆周运动,于是小球沿切线方向逐渐偏离原来的轨道,同时轻线下端的物体m1逐渐上升,且小球的线速度逐渐减小.假设物体m1上升高度为h,小球的线速度减为v时,小球在半径为(Rh)的轨道上再次做匀速圆周运动,根据牛顿第二定律有      ②

再选小球M、物体m1与地球组所的系统为研究对象,研究两物体间的轻线剪断后物体m1上升的过程,由于只有重力做功,所以系统的机械能守恒.选小球做匀速圆周运动的水平面为零势面,设小球沿半径为R的轨道做匀速圆周运动时m1到水平板的距离为H,根据机械能守恒定律有    ③

以上三式联立解得 

解法二:(转化观点)与解法一相同,首先列出①②两式,然后再选小球、物体m1与地球组成的系统为研究对象,研究两物体间的轻线剪断后物体m1上升的过程,由于系统的机械能守恒,所以小球动能的减少量等于物体m1重力势能的增加量.即

     ④

①、②、④式联立解得 

点评:比较上述两种解法可以看出,根据机械能守恒定律应用守恒观点列方程时,需要选零势面和找出物体与零势面的高度差,比较麻烦;如果应用转化观点列方程,则无需选零势面,往往显得简捷.

【例5】  解析:(1)第一颗子弹射入木块过程中动量守恒   ①

解得:=3m/s   ②

木块向右作减速运动加速度m/s2    ③

木块速度减小为零所用时间      ④

解得t1 =0.6s<1s    ⑤

所以木块在被第二颗子弹击中前向右运动离A点最远时,速度为零,移动距离为

解得s1=0.9m.     ⑥

(2)在第二颗子弹射中木块前,木块再向左作加速运动,时间t2=1s-0.6s=0.4s   ⑦

速度增大为v­2=at2=2m/s(恰与传送带同速)      ⑧

向左移动的位移为    ⑨

所以两颗子弹射中木块的时间间隔内,木块总位移S0=S1S2=0.5m方向向右     ⑩

第16颗子弹击中前,木块向右移动的位移为    11

第16颗子弹击中后,木块将会再向右先移动0.9m,总位移为0.9m+7.5=8.4m>8.3m木块将从B端落下.

所以木块在传送带上最多能被16颗子弹击中.

(3)第一颗子弹击穿木块过程中产生的热量为

   12

木块向右减速运动过程中板对传送带的位移为    13

产生的热量为Q2=      14

木块向左加速运动过程中相对传送带的位移为     15

产生的热量为     16

第16颗子弹射入后木块滑行时间为t3    17

解得t3=0.4s   18

木块与传送带的相对位移为S=v1­t3+0.8    19

产生的热量为Q4=   20

全过程中产生的热量为Q=15(Q1Q2Q­3)+Q1Q4

解得Q=14155.5J    21

【例6】  解析:运动分析:当小车被挡住时,物体落在小车上沿曲面向下滑动,对小车有斜向下方的压力,由于P的作用小车处于静止状态,物体离开小车时速度为v1,最终平抛落地,当去掉挡板,由于物对车的作用,小车将向左加速运动,动能增大,物体相对车滑动的同时,随车一起向左移动,整个过程机械能守恒,物体滑离小车时的动能将比在前一种情况下小,最终平抛落地,小车同时向前运动,所求距离是物体平抛过程中的水平位移与小车位移的和.求出此种情况下,物体离开车时的速度v2,及此时车的速度以及相应运动的时间是关键,由于在物体与小车相互作用过程中水平方向动量守恒这是解决v2间关系的具体方法.

(1)挡住小车时,求物体滑落时的速度v1,物体从最高点下落至滑离小车时机械能守恒,设车尾部(右端)离地面高为h,则有,     ①

由平抛运动的规律s0=v1t    ②

.    ③

(2)设去掉挡板时物体离开小车时速度为v2,小车速度为,物体从最高点至离开小车之时系统机械能守恒    ④

物体与小车相互作用过程中水平方向动量守恒.   ⑤

此式不仅给出了v2­与大小的关系,同时也说明了v­2是向右的.

物体离开车后对地平抛       ⑥

     ⑦

车在时间内向前的位移    ⑧

比较式⑦、③,得解式①、④、⑤,得

此种情况下落地点距车右端的距离

点评:此题解题过程运用了机械能守恒、动量守恒及平抛运动的知识,另外根据动量守恒判断m离车时速度的方向及速度间的关系也是特别重要的.

【例7】  解析:(1)设第一次碰墙壁后,平板车向左移动s,速度为0.由于体系总动量向右,平板车速度为零时,滑块还在向右滑行.

由动能定理    ①

            ②

代入数据得      ③

(3)假如平板车在第二次碰撞前还未和滑块相对静止,那么其速度的大小肯定还是2m/s,滑块的速度则大于2m/s,方向均向右.这样就违反动量守恒.所以平板车在第二次碰撞前肯定已和滑块具有共同速度v.此即平板车碰墙前瞬间的速度.

     ④

      ⑤

代入数据得    ⑥

(3)平板车与墙壁第一次碰撞后到滑块与平板又达到共同速度v前的过程,可用图(a)(b)(c)表示.(a)为平板车与墙壁撞后瞬间滑块与平板车的位置,图(b)为平板车到达最左端时两者的位置,图(c)为平板车与滑块再次达到共同速度为两者的位置.在此过程中滑块动能减少等于摩擦力对滑块所做功,平板车动能减少等于摩擦力对平板车所做功(平板车从BA再回到B的过程中摩擦力做功为零),其中分别为滑块和平板车的位移.滑块和平板车动能总减少为其中为滑块相对平板车的位移.此后,平板车与墙壁发生多次碰撞,每次情况与此类似,最后停在墙边.设滑块相对平板车总位移为l,则有    ⑦

        ⑧

代入数据得      ⑨

l即为平板车的最短长度.

【例8】  解析:本题应用动量守恒,机械能守恒及能量守恒定律联合求解。

m下落在砂箱砂里的过程中,由于车与小泥球m在水平方向不受任何外力作用,故车及砂、泥球整个系统的水平方向动量守恒,则有:

    ①

此时物块A由于不受外力作用,继续向右做匀速直线运动再与轻弹簧相碰,以物块A、弹簧、车系统为研究对象,水平方向仍未受任何外力作用,系统动量守恒,当弹簧被压缩到最短,达最大弹性势能E­p­时,整个系统的速度为v2,则由动量守恒和机械能守恒有:

     ②

    ③

由①②③式联立解得:     ④

之后物块A相对地面仍向右做变减速运动,而相对车则向车的左面运动,直到脱离弹簧,获得对车向左的动能,设刚滑至车尾,则相对车静止,由能量守恒,弹性势能转化为系统克服摩擦力做功转化的内能有:    ⑤

由④⑤两式得:  

跟踪练习

1.【答案】 D

【解析】 在△t1时间内,I1=Ft1=mv=△p1,在△t2时间内.I2=Ft2=2mvmv=mv=△p2  ∴I1=I2

W1<W2,D选项正确.

【说明】 物体在恒定的合外力F作用下做直线运动,由牛顿第二定律可知物体做匀加速直线运动,速度由零增大到v的时间△t2和由v增大到2v的时间△t2是相等的,所以在△t1和△t2的两段时间内合外力的冲量是相等的.在△t1的平均速度小于△t2时间内的平均速度,从而得出在△t1内的位移小于在△t­2时间的位移,恒力F所做的功W1<W2.D选项正确.

2.【答案】 C

【解析】 无论子弹射入的深度如何,最终子弹和木块都等速,由动量守恒定律知,两种情况最终两木块(包括子弹)速度都相等.对木块由动能定理知:两次子弹对木块做功一样多.由动量定理知:两次木块所受冲量一样大.对系统由能的转化和守恒定律知,两次损失的机械能一样多,产生的热量也一样多.

3.【解析】 (1)物体由A滑到B的过程中,容器不脱离墙,物块由B沿球面向上滑时,物块对容器的作用力有一水平向右的分量,容器将脱离墙向右运动.因此,物块由AB动量变化量最大,受容器的冲量最大,竖直墙作用于容器的冲量也最大.

物块由AB机械能守恒,设物块滑到B的速度为vB,则

    ①

物块动量变化量方向沿水平方向.容器作用于物块的冲量为

容器不动,墙对容器的冲量,方向水平向右,这是最大冲量.

(2)物块从B处上升,容器向右运动过程中,系统水平方向动量守恒.物块上升到最高处相对容器静止的时刻,物块与容器具有共同的水平速度,设它为v,则由动量守恒定律得    ②

系统机械能守恒    ③

联立①②③式解得   M=3m

4.【解析】 设离子喷出尾喷管时的速度为v,单位时间内喷出n个离子,则△t时间内喷出离子数为nt,由动量定理得

在发射离子过程中,卫星和发射出的离子系统,动量守恒,设喷出离子总质量为△m,则有△mv=(M-△m)v  ∵△mm   ∴v

5.【解析】 (1)设整个过程摩擦力做的功是W,由动能定理得:mghW=0    ①

W=mgh

(2)设物块沿轨道AB滑动的加速度为a1

由牛顿第二定律有  ②

设物块到达B点时的速度为VB,则有VB=a1t1   ③

设物块沿轨道BC滑动的加速度为a2,由牛顿第二定律有    ④

物块从B点开始作匀减速运动,到达C点时,速度为零,故有    ⑤

由②③④⑤式可得:    ⑥

(3)使物块匀速地、缓慢地沿原路回到A点所需做的功应该是克服重力和阻力所做功之和,即是W1=mghW=2mgh

6.【解析】 (1)物体PA下滑经BC过程中根据动能定理:

C点时

根据牛顿第三定律,PC点的压力

(2)从CE机械能守恒

ED间高度差

(3)物体P最后在B与其等高的圆弧轨道上来回运动时,经C点压力最小,由BC根据机械能守恒

根据牛顿第三定律  压力

7.【解析】 物块的运动可分为以下四个阶段:①弹簧弹力做功阶段;②离开弹簧后在AB段的匀速直线运动阶段;③从BC所进行的变速圆周运动阶段;④离开C点后进行的平抛运动阶段.弹簧弹力是变化的,求弹簧弹力的功可根据效果――在弹力作用下物块获得的机械能,即到达B点的动能求解.物块从BC克服阻力做的功也是变力,同样只能根据B点和C点两点的机械能之差判断.因此求出物块在B点和C点的动能是关键.可根据题设条件:“进入导轨瞬间对导轨的压力为其重力的7倍”、“恰能到达C点”,求出

物块在B点时受力mg和导轨的支持力N=7mg,由牛顿第二定律,

物块到达C点仅受重力mg,根据牛顿第二定律,有

(1)根据动能定理,可求得弹簧弹力对物体所做的功为W=EkB=3mgR

(2)物体从BC只有重力和阻力做功,根据动能定理,

即物体从BC克服阻力做的功为0.5mgR

(3)物体离开轨道后做平抛运动,仅有重力做功,机械能守恒,

评析:中学阶段不要求直接用


同步练习册答案