(Ⅱ)求二面角的大小. 查看更多

 

题目列表(包括答案和解析)

二面角α-EF-β的大小为120°,A是它内部的一点AB⊥α,AC⊥β,B,C分别为垂足.
(1)求证:平面ABC⊥β;
(2)当AB=4cm,AC=6cm,求BC的长及A到EF的距离.

查看答案和解析>>

二面角α-EF-β的大小为120°,A是它内部的一点AB⊥α,AC⊥β,B,C分别为垂足.
(1)求证:平面ABC⊥β;
(2)当AB=4cm,AC=6cm,求BC的长及A到EF的距离.

查看答案和解析>>

二面角α-EF-β的大小为120°,A是它内部的一点AB⊥α,AC⊥β,B,C分别为垂足.
(1)求证:平面ABC⊥β;
(2)当AB=4cm,AC=6cm,求BC的长及A到EF的距离.

查看答案和解析>>

(2008•佛山二模)某物流公司购买了一块长AM=30米、宽AN=20米的矩形地块,规划建设占地如图中矩形ABCD的仓库,其余地方为道路或停车场,要求顶点C在地块对角线MN上,顶点B,D分别在边AM,AN上,设AB长度为x米.
(1)要使仓库占地面积不小于144平方米,求x的取值范围;
(2)若规划建设的仓库是高度与AB的长度相等的长方体建筑,问AB的长度是多少时,仓库的库容量最大?(墙地及楼板所占空间忽略不计)

查看答案和解析>>

如图,P-AD-C是直二面角,四边形ABCD是∠BAD=120°的菱形,AB=2,PA⊥AD,E是CD的中点,设PC与平面ABCD所成的角为45°.
(1)求证:平面PAE⊥平面PCD;
(2)试问在线段AB(不包括端点)上是否存在一点F,使得二面角A-PE-D的大小为450?若存在,请求出AF的长,若不存在,请说明理由.

查看答案和解析>>

一、选择题

20080917

二、填空题

13.1    14.(-1,3)    15.5    16.②③④

三、解答题

17.解:(Ⅰ)

      ………………4分

  

  当   ……2分

(Ⅱ)  ………3分

  又

         ………………3分

18.解:(Ⅰ)乙在第3次独立地射时(每次射击相互独立)才首次命中10环的概率为

  

(Ⅱ)甲、乙两名运动员各自独立射击1次,两人中恰有一人命中10环的概率为

  

19.解:(Ⅰ)以D为坐标原点,DA所在的直线为x轴、DC所在的直线为y轴、DP所在的直线为z轴,建立如图所示的空间直角坐标系D-xyz.

  则A(1,0,0),B(1,1,0),C(0,1,0),

  P(0,0,1)

  

  

   (Ⅱ)

  

  

  

  

  

  解法二:

  设平面BCE的法向量为

  由

             ………………2分

  设平面FCE的法向量为

  由

  

       …………2分

20.(Ⅰ)由题意,得

  

   (Ⅱ)①当

  

②当

  令

  

21.解:(Ⅰ)设椭圆方程为

  由题意,得

所求椭圆方程;  ……………5分

(Ⅱ)设抛物线C的方程为.

  由.

  抛物线C的方程为

  

,设,则有

.

  

  代入直线

  

22.解:(Ⅰ)

  

(Ⅱ)记方程①:方程②:

  分别研究方程①和方程②的根的情况:

   (1)方程①有且仅有一个实数根方程①没有实数根

   (2)方程②有且仅有两个不相同的实数根,即方程有两个不相同的非正实数根.

  

  方程②有且仅有一个不相同的实数根,即方程有且仅有一个蜚 正实数根.

  

  综上可知:当方程有三个不相同的实数根时,

  当方程有且仅有两个不相同的实数根时,

  符合题意的实数取值的集合为

 


同步练习册答案