查看更多

 

题目列表(包括答案和解析)

为提高广东中小学生的健康素质和体能水平,广东省教育厅要求广东各级各类中小学每年都要在体育教学中实施“体能素质测试”,测试总成绩满分为100分.根据广东省标准,体能素质测试成绩在[85,100]之间为优秀;在[75,85)之间为良好;在[60,75)之间为合格;在(0,60)之间,体能素质为不合格.

现从佛山市某校高一年级的900名学生中随机抽取30名学生的测试成绩如下:
65,84,76,70,56,81,87,83,91,75,81,88,80,82,93,
85,90,77,86,81,83,82,82,64,79,86,68,71,89,96.
(1)在答题卷上完成频率分布表和频率分布直方图,并估计该校高一年级体能素质为优秀的学生人数;
(2)在上述抽取的30名学生中任取2名,设ξ为体能素质为优秀的学生人数,求ξ的分布列和数学期望(结果用分数表示).

查看答案和解析>>

为加强大学生实践、创新能力和团队精神的培养,促进高等教育教学改革,教育部门主办了全国大学生智能汽车竞赛.该竞赛分为预赛和决赛两个阶段,参加决赛的队伍按照抽签方式决定出场顺序.通过预赛,选拔出甲、乙等五支队伍参加决赛.
(Ⅰ)求决赛中甲、乙两支队伍恰好排在前两位的概率;
(Ⅱ)若决赛中甲队和乙队之间间隔的队伍数记为X,求X的分布列和数学期望.

查看答案和解析>>

在教学调查中,甲、乙、丙三个班的数学测试成绩分布如下图,假设三个班的平均分都是75分,s1,s2,s3分别表示甲、乙、丙三个班数学测试成绩的标准差,则有(  )

查看答案和解析>>

某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如图).记成绩不低于90分者为“成绩优秀”.
(1)从乙班随机抽取2名学生的成绩,记“成绩优秀”的个数为ξ,求ξ的分布列和数学期望;
(2)根据频率分布直方图填写下面2×2列联表,并判断是否有95%的把握认为:“成绩优秀”与教学方式有关
甲班(A方式) 乙班(B方式) 总计
成绩优秀
成绩不优秀
总计
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P≥(k2≥k) 0.25 0.15 0.10 0.05 0.025
k 1.323 2.072 2.706 3.814 5.024

查看答案和解析>>

(2013•牡丹江一模)某大学高等数学老师这学期分别用A,B两种不同的教学方式试验甲、乙两个大一新班(人数均为60人,入学数学平均分数和优秀率都相同;勤奋程度和自觉性都一样).现随机抽取甲、乙两班各20名的高等数学期末考试成绩,得到茎叶图:
(Ⅰ)依茎叶图判断哪个班的平均分高?
(Ⅱ)现从甲班高等数学成绩不得低于80分的同学中随机抽取两名同学,求成绩为86分的同学至少有一个被抽中的概率;
(Ⅲ)学校规定:成绩不低于85分的为优秀,请填写下面的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”
甲班 乙班 合计
优秀
不优秀
合计
下面临界值表仅供参考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>


同步练习册答案