12.已知向量a.b满足:|a|=3.|b|=4.a.b的夹角是120°,则|a+2b|= . 查看更多

 

题目列表(包括答案和解析)

已知向量ab满足:|a|=3,|b|=4,ab的夹角是120°,则|a+2b|=________.

查看答案和解析>>

已知向量ab满足:|a|=3,|b|=4,ab的夹角是120°,则|a+2b|=________.

查看答案和解析>>

已知向量a=(8,2),b=(3,3),c=(6,12),p=(6,4),问是否存在实数x,y,z,同时满足下列两个条件:(1)p=xa+yb+zc;(2)x+y+z=1.如果存在,请求出x、y、z的值;如果不存在,请说明理由.

查看答案和解析>>

设向量
a
=(a1a2),
b
=(b1b2)
,定义一种向量积:
a
?
b
=(a1a2)?(b1b2)=(a1b1a2b2)
.已知
m
=(
1
2
,3),
n
=(
π
6
,0)
,点P在y=sinx的图象上运动,点Q在y=f(x)的图象上运动,且满足
OQ
=
m
?
OP
+
n
(其中O为坐标原点),则y=f(x)的最大值及最小正周期分别是(  )
A、
1
2
,π
B、
1
2
,4π
C、3,π
D、3,4π

查看答案和解析>>

在A、B、C、D四小题中只能选做2题,每小题10分,共计20分,请在答题纸指定区域内作答,解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:(几何证明选讲)
如图,从O外一点P作圆O的两条切线,切点分别为A,B,
AB与OP交于点M,设CD为过点M且不过圆心O的一条弦,
求证:O,C,P,D四点共圆.
B.选修4-2:(矩阵与变换)
已知二阶矩阵M有特征值λ=3及对应的一个特征向量e1=[
 
1
1
],并且矩阵M对应的变换将点(-1,2)变换成(9,15),求矩阵M.
C.选修4-4:(坐标系与参数方程)
在极坐标系中,曲线C的极坐标方程为p=2
2
sin(θ-
π
4
),以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=1+
4
5
t
y=-1-
3
5
t
(t为参数),求直线l被曲线C所截得的弦长.
D.选修4-5(不等式选讲)
已知实数x,y,z满足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

 

一、选择题 (每题5分,共50分)

题号

1

2

3

4

5

6

7

8

9

10

小计

答案

D

D

B

C

C

C

B

C

A

C

 

二、填空题:本大题共4小题,每小题5分,共20.

11. -5  12.7  13.21 14.例如:,分段函数也可(3分);=a/3.(2分)

 

三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.

15.(12分)

已知:函数().解不等式:.

解:1)当时,即解,(2分)

即,(4分)不等式恒成立,即;(6分)

2)当时,即解(8分),即,(10分)因为,所以.(11分)

由1)、2)得,原不等式解集为.(12分)

16.(本小题满分12分)

解:1)

               (2分)             (4分)

(6分)

.(8分)

当时(9分),取最大值.(10分)

2)当时,,即,(11分)

解得,.(12分)

17.(本小题满分14分)

1)证明:连接AC.

∵点A是点P在底面AC上的射影,(1分)

∴PA^面AC.(2分)

PC在面AC上的射影是AC.

正方形ABCD中,BD^AC,(3分)

∴BD^PC.(4分)

2)解:连接OS.

∵BD^AC,BD^PC,

又AC、PC是面PAC上的两相交直线,

∴BD^面PAC. (6分)

∵OSÌ面PAC,

∴BD^OS.(7分)

正方形ABCD的边长为a,BD=,(8分)

∴DBSD的面积.(9分)

OS的两个端点中,O是定点,S是动点.

∴当取得最小值时,OS取得最小值,即OS^PC.(10分)

∵PC^BD, OS、BD是面BSD中两相交直线,

∴PC^面BSD.(12分)

又PCÌ面PCD,∴面BSD^面PCD.(13分)

∴面BSD与面PCD所成二面角的大小为90°.(14分)

18.(本小题满分14分)

1)解:设S(x,y),SA斜率=,SB斜率=,(2分)

由题意,得,(4分)

经整理,得.(6分,未指出x的范围,扣1分)

点S的轨迹C为双曲线(除去两顶点).(7分)

2)解:假设C上存在这样的两点P(x1,y1)和Q(x2,y2),则PQ直线斜率为-1,

且P、Q的中点在直线x-y-1=0上.

设PQ直线方程为:y=-x+b,

由整理得.(9分)

其中时,方程只有一个解,与假设不符.

当时,D>0,D=

=,

所以,(*)(10分)

又,所以,代入y=-x+b,

得,

因为P、Q中点在直线x-y-1=0上,

所以有:,整理得,(**)(11分)

解(*)和(**),得-1<b<0,0<t<1,(13分)

经检验,得:当t取(0,1)中任意一个值时,曲线C上均存在两点关于直线x-y-1=0对称.(14分)

19.(本小题满分14分)  

解:甲选手胜乙选手的局数作为随机变量ξ,它的取值共有0、1、2、3四个值.

1)当ξ=0时,本场比赛共三局,甲选手连负三局,

P(ξ=0)=(1-0.6)3=0.064;(2分)

2)当ξ=1时,本场比赛共四局,甲选手负第四局,且前三局中,甲胜一局,

P(ξ=1)=;(4分)

3)当ξ=2时,本场比赛共五局,甲选手负第五局,且前四局中,甲胜二局,

P(ξ=2)=; (6分)

4)当ξ=3时,本场比赛共三局、或四局、或五局.其中共赛三局时,甲连胜这三局;共赛四局时,第四局甲胜,且前三局中甲胜两局;共赛五局时,第五局甲胜,且前四局中甲胜两局;

P(ξ=3)==0.68256(8分)

ξ的概率分布列为:

ξ

0

1

2

3

P

0.064

0.1152

0.13824

0.68256

(10分)

Eξ=0´P(ξ=0)+ 1´ P(ξ=1)+2´ P(ξ=2)+3´ P(ξ=3)    (12分)

=0´0.064+1´0.1152+2´0.13824+3´0.68256=2.43926»2.4394.(14分)

 

20.(本小题满分14分)

解:(1)由题意知,(1分)

得,(3分)∴ (5分)                       

(2)(6分)

     (8分)                  

(3)设存在S,P,r,(9分)

          (10分)                        

即 

 (*)   (12分)        

因为s、p、r为偶数

1+2,(*)式产生矛盾.所以这样的三项不存在.(14分)

       以上答案及评分标准仅供参考,如有其它解法请参照给分.

 


同步练习册答案