15. 从某校参加2008年全国高中数学联赛预赛的450名同学中.随机抽取若干名同学.将他们的成绩制成频率分布表.下面给出了此表中部分数据.(1)根据表中已知数据.你认为在①.②.③处的数值分别为 ▲ . ▲ . ▲ .(2)补全在区间 [70.140] 上的频率分布直方图,(3)若成绩不低于110分的同学能参加决赛.那么可以估计该校大约有多少学生能参加决赛? 分组频数频率[70.80) 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

从某学校高三年级共800名男生中随机抽取50名测量身高,测量发现被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组、第二组;…第八组,右图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组、第七组、第八组人数依次构成等差数列.

 

(1)估计这所学校高三年级全体男生身高180cm以上(含180cm)的人数;

(2)求第六组、第七组的频率并补充完整频率分布直方图;

 (3)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为,求满足的事件概率.

 

查看答案和解析>>

(本小题满分14分)

从某学校高一年级名学生中随机抽取名测量身高,据测量被抽取的学生的身高全部介于之间,将测量结果按如下方式分成八组:第一组.第二组;…第八组,右图

是按上述分组方法得到的条形图                       

(1)根据已知条件填写下面表格:

组 别

1

2

3

4

5

6

7

8

样本数

 

 

 

 

 

 

 

 

(2)估计这所学校高一年级名学生中身高在以上(含)的人数;

(3)在样本中,若第二组有人为男生,其余为女生,第七组有人为女生,其余为男生,在第二组和第七组中各选一名同学组成实验小组,问:实验小组中恰为一男一女的概率是多少?

 

查看答案和解析>>

(本小题满分14分)

某校高一年级要从3名男生和2名女生中任选3名代表参加学校的演讲比赛.学

科网          (1)求男生被选中的概率;

  (2)求男生和女生至少一人被选中的概率.

 

查看答案和解析>>

.(本小题满分14分)

某校从参加高一年级期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:

(1)求第四小组的频率,并补全这个频率分布直方图;

(2)估计这次考试的及格率(60分及以上为及格)和平均分;

(3)用分层抽样的方法从成绩是80分以上(包括80分)的学生中抽取了6人进行试卷分析,再从这6个人中选2人作学习经验介绍发言,求选出的2人中至少有1人在的概率.

 

查看答案和解析>>

(本小题满分14分)

某校从参加高一年级期末考试的学生中抽出60名学生,并统计了他们的物理成绩(成绩均为整数且满分为100分),把其中不低于50分的分成五段后画出如下部分频率分布直方图.观察图形的信息,回答下列问题

(1)求出物理成绩低于50分的学生人数

(2)估计这次考试物理学科及格率(60分及以上为及格)

(3)从物理成绩不及格的学生中选两人,求他们成绩至少有一个不低于50分的概率.

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

一、填空题:(本大题共14小题,每小题5分,共70分.)

1.;  2.;   3.;  4.;  5. 11;  6. 210; 7. 16;   8. 3;  9.; 10.; 11. 7; 12.; 13.;  14.(结果为,不扣分).

二、解答题:(本大题共6小题,共90分.)

15.(本小题满分14分)

解:(1)50;0.04;0.10 .    ………… 6分

       (2)如图.      ……………… 10分

       (3)在随机抽取的名同学中有

出线,.      …………… 13分

答:在参加的名中大概有63名同学出线.      

   ………………… 14分

16.(本小题满分14分)

解:真,则有,即.                    ------------------4分

真,则有,即.     ----------------9分

中有且只有一个为真命题,则一真一假.

①若真、假,则,且,即;   ----------------11分

②若假、真,则,且,即3≤.    ----------------13分

故所求范围为:或3≤.                          -----------------14分

17.(本小题满分15分)

解:(1)设在(1)的条件下方程有实根为事件

数对共有对.                                   ------------------2分

若方程有实根,则,即.                 -----------------4分

则使方程有实根的数对对.                                                         ------------------6分

所以方程有实根的概率.                          ------------------8分

(2)设在(2)的条件下方程有实根为事件

,所以

-------------10分

方程有实根对应区域为.          --------------12分

所以方程有实根的概率.------------------15分

 

18.(本小题满分15分)

解:(1)易得

.当时,在直角中,,故.所以.     ------------4分

所以

所以异面直线所成角余弦值为.- -----7分

(2)设直线与平面所成的角为,平面的一个法向量为.

则由.得可取,-------11分

,------------13分

即直线与平面所成角的取值范围为.         ------------------------15分

19.(本小题满分16分)

解:(1)设关于l的对称点为,则

解得,即,故直线的方程为

,解得.                       ------------------------5分

(2)因为,根据椭圆定义,得

,所以.又,所以.所以椭圆的方程为.                                        ------------------------10分

(3)假设存在两定点为,使得对于椭圆上任意一点(除长轴两端点)都有为定值),即?,将代入并整理得…(*).由题意,(*)式对任意恒成立,所以,解之得

所以有且只有两定点,使得为定值.   ---------------16分

 

 

 

20.(本小题满分16分)

解:(1).                        ------------------------2分

因为,令;令.所以函数的增区间为,减区间为.                                           ------------------------5分

(2)因为,设,则.----------6分

设切点为,则切线的斜率为,切线方程为,由点在切线上知,化简得,即

所以仅可作一条切线,方程是.              ------------------------9分

(3).                  

上恒成立上的最小值.--------------11分

①当时,上单调递减,上最小值为,不符合题意,故舍去;               ------------------------12分

②当时,令

时,即时,函数在上递增,的最小值为;解得.                                       ------------------------13分

时,即时,函数在上递减,的最小值为,无解;                                                -----------------------14分

时,即时,函数在上递减、在上递增,所以的最小值为,无解.                ------------------------15分

综上,所求的取值范围为.                     ------------------------16分

 

 

 

 

 


同步练习册答案