题目列表(包括答案和解析)
(本小题满分14分)
从某学校高三年级共800名男生中随机抽取50名测量身高,测量发现被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组、第二组;…第八组,右图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组、第七组、第八组人数依次构成等差数列.
(1)估计这所学校高三年级全体男生身高180cm以上(含180cm)的人数;
(2)求第六组、第七组的频率并补充完整频率分布直方图;
(3)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为,求满足的事件概率.
(本小题满分14分)
从某学校高一年级名学生中随机抽取名测量身高,据测量被抽取的学生的身高全部介于和之间,将测量结果按如下方式分成八组:第一组.第二组;…第八组,右图
是按上述分组方法得到的条形图.
(1)根据已知条件填写下面表格:
组 别 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
样本数 |
|
|
|
|
|
|
|
|
(2)估计这所学校高一年级名学生中身高在以上(含)的人数;
(3)在样本中,若第二组有人为男生,其余为女生,第七组有人为女生,其余为男生,在第二组和第七组中各选一名同学组成实验小组,问:实验小组中恰为一男一女的概率是多少?
(本小题满分14分)
某校高一年级要从3名男生,,和2名女生,中任选3名代表参加学校的演讲比赛.学
科网 (1)求男生被选中的概率;
(2)求男生和女生至少一人被选中的概率.
.(本小题满分14分)
某校从参加高一年级期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段,…后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:
(1)求第四小组的频率,并补全这个频率分布直方图;
(2)估计这次考试的及格率(60分及以上为及格)和平均分;
(3)用分层抽样的方法从成绩是80分以上(包括80分)的学生中抽取了6人进行试卷分析,再从这6个人中选2人作学习经验介绍发言,求选出的2人中至少有1人在的概率.
(本小题满分14分)
某校从参加高一年级期末考试的学生中抽出60名学生,并统计了他们的物理成绩(成绩均为整数且满分为100分),把其中不低于50分的分成五段,…后画出如下部分频率分布直方图.观察图形的信息,回答下列问题
(1)求出物理成绩低于50分的学生人数
(2)估计这次考试物理学科及格率(60分及以上为及格)
(3)从物理成绩不及格的学生中选两人,求他们成绩至少有一个不低于50分的概率.
一、填空题:(本大题共14小题,每小题5分,共70分.)
1.; 2.; 3.; 4.; 5. 11; 6. 210; 7. 16; 8. 3; 9.; 10.; 11. 7; 12.; 13.; 14.(结果为,不扣分).
二、解答题:(本大题共6小题,共90分.)
15.(本小题满分14分)
解:(1)50;0.04;0.10 . ………… 6分
(2)如图. ……………… 10分
(3)在随机抽取的名同学中有名
出线,. …………… 13分
答:在参加的名中大概有63名同学出线.
………………… 14分
16.(本小题满分14分)
解:真,则有,即. ------------------4分
真,则有,即. ----------------9分
若、中有且只有一个为真命题,则、一真一假.
①若真、假,则,且,即≤; ----------------11分
②若假、真,则,且,即3≤. ----------------13分
故所求范围为:≤或3≤. -----------------14分
17.(本小题满分15分)
解:(1)设在(1)的条件下方程有实根为事件.
数对共有对. ------------------2分
若方程有实根,则≥,即. -----------------4分
则使方程有实根的数对有 共对. ------------------6分
所以方程有实根的概率. ------------------8分
(2)设在(2)的条件下方程有实根为事件.
,所以.
-------------10分
方程有实根对应区域为,. --------------12分
所以方程有实根的概率.------------------15分
18.(本小题满分15分)
解:(1)易得
.当时,在直角中,,故.所以,. ------------4分
所以.
所以异面直线与所成角余弦值为.- -----7分
(2)设直线与平面所成的角为,平面的一个法向量为.
则由.得可取,-------11分
, ,------------13分
,,. ,.
即直线与平面所成角的取值范围为. ------------------------15分
19.(本小题满分16分)
解:(1)设关于l的对称点为,则且,
解得,,即,故直线的方程为.
由,解得. ------------------------5分
(2)因为,根据椭圆定义,得
,所以.又,所以.所以椭圆的方程为. ------------------------10分
(3)假设存在两定点为,使得对于椭圆上任意一点(除长轴两端点)都有(为定值),即?,将代入并整理得…(*).由题意,(*)式对任意恒成立,所以,解之得 或.
所以有且只有两定点,使得为定值. ---------------16分
20.(本小题满分16分)
解:(1). ------------------------2分
因为,令得;令得.所以函数的增区间为,减区间为. ------------------------5分
(2)因为,设,则.----------6分
设切点为,则切线的斜率为,切线方程为即,由点在切线上知,化简得,即.
所以仅可作一条切线,方程是. ------------------------9分
(3),.
在上恒成立在上的最小值.--------------11分
①当时,在上单调递减,在上最小值为,不符合题意,故舍去; ------------------------12分
②当时,令得.
当时,即时,函数在上递增,的最小值为;解得. ------------------------13分
当时,即时,函数在上递减,的最小值为,无解; -----------------------14分
当时,即时,函数在上递减、在上递增,所以的最小值为,无解. ------------------------15分
综上,所求的取值范围为. ------------------------16分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com