同理可得.当且仅当x=y=z时.以上三式等号都成立.将上述三个不等式两边分别相加.并除以2. 查看更多

 

题目列表(包括答案和解析)

 [番茄花园1] 本题共有2个小题,第一个小题满分5分,第2个小题满分8分。

已知数列的前项和为,且

(1)证明:是等比数列;

(2)求数列的通项公式,并求出n为何值时,取得最小值,并说明理由。

同理可得,当n≤15时,数列{Sn}单调递减;故当n=15时,Sn取得最小值.

 


 [番茄花园1]20.

查看答案和解析>>

已知函数f(x)=
sinx,sinx≤cosx
cosx,sinx>cosx
,给出下列四个结论:
①当且仅当x=2kπ+π,k∈Z时,f(x)取最小值;
②f(x)是周期函数;
③f(x)值域是[-1,1];
④当且仅当2kπ+
π
2
<x<2kπ+2π,k∈Z
时,f(x)<0.
其中正确的结论序号是
 

查看答案和解析>>

对于函数f(x)=
1
2
(sinx+cosx)-
1
2
|cosx-sinx|
,下列说法正确的是(  )

查看答案和解析>>

定义函数f(x)=
2cosx,(sinx<cosx)
2sinx (sinx≥cosx)
,给出下列四个命题:①该函数的值域是[-2,2];②该函数是以π为最小正周期的周期函数;③当且仅当x=2kπ-
π
2
(k∈Z)
时该函数取得最大值2;④当且仅当2kπ-π<x<2kπ-
π
2
(k∈Z)
时,f(x)<0.上述命题中,错误命题的个数是(  )

查看答案和解析>>

对任意实数a,b,函数F(a,b)=
1
2
(a+b-|a-b|)
.如果函数f(x)=sinx,g(x)=cosx,那么对于函数G(x)=F(f(x),g(x)).对于下列五种说法:
(1)函数G(x)的值域是[-
2
,2]

(2)当且仅当2kπ+
π
2
<x<2(k+1)π(k∈Z)
时,G(x)<0;
(3)当且仅当x=2kπ+
π
2
(k∈Z)
时,该函数取最大值1;
(4)函数G(x)图象在[
π
4
4
]
上相邻两个最高点的距离是相邻两个最低点的距离的4倍;
(5)对任意实数x有G(
4
-x)=G(
4
+x)
恒成立.
其中正确结论的序号是
(2)(4)(5)
(2)(4)(5)

查看答案和解析>>


同步练习册答案