方向向量为的直线过椭圆C: 查看更多

 

题目列表(包括答案和解析)

已知方向向量为的直线过椭圆C:=1(a>b>0)的焦点以及点(0,),椭圆C的中心关于直线的对称点在椭圆C的右准线上。

⑴求椭圆C的方程。

⑵过点E(-2,0)的直线交椭圆C于点M、N,且满足,(O为坐标原点),求直线的方程。

查看答案和解析>>

22.

已知方向向量为的直线l过点()和椭圆的焦点,且椭圆C的中心关于直线l的对称点在椭圆C的右准线上.

(Ⅰ)求椭圆C的方程;

(Ⅱ)是否存在过点E(-2,0)的直线m交椭圆C于点M、N,满足=,cot∠MON≠0(O为原点).若存在,求直线m的方程;若不存在,请说明理由.

查看答案和解析>>

已知方向向量为的直线和椭圆的焦点,且椭圆C的中心关于直线的对称点在椭圆C的右准线上。

       (1)求椭圆C的方程

       (2)是否存在过点的直线交椭圆C于点M,N且满足

       (O为原点),若存在求出直线的方程,若不存在说明理由。

查看答案和解析>>

. 已知方向向量为的直线l过椭圆的焦点以及点(0,),直线l与椭圆C交于 A 、B两点,且A、B两点与另一焦点围成的三角形周长为.

(1)求椭圆C的方程;

(2)过左焦点且不与x轴垂直的直线m交椭圆于M、N两点, (O坐标原点),求直线m的方程.

 

查看答案和解析>>

已知方向向量为数学公式的直线l过点数学公式和椭圆数学公式的右焦点,且椭圆的离心率为数学公式
(1)求椭圆C的方程:
(2)若已知点M,N是椭圆C上不重合的两点,点D(3,0)满足数学公式,求实数λ的取值范围.

查看答案和解析>>

1.C  2.D 3.A  4.A 5.C 6.A 7.D 8.A 9.C 10.D 11.D12.B

13.2  14. 15.16.①③④

17.

18.解:

.

⑵在上单调递增,在上单调递减.

所以,当时,;当时,.

的值域为.

19.解:⑴直线①,

过原点垂直于的直线方程为

解①②得

∵椭圆中心O(0,0)关于直线的对称点在椭圆C的右准线上,

, …………………(分)

∵直线过椭圆焦点,∴该焦点坐标为(2,0),

故椭圆C的方程为  ③…………………12分)

20.点评:本小题考查二次函数、等差数列、数列求和、不等式等基础知识和基本的运算技能,考查分析问题的能力和推理能力。

解:(Ⅰ)设这二次函数f(x)=ax2+bx (a≠0) ,则 f`(x)=2ax+b,由于f`(x)=6x-2,得

a=3 ,  b=-2, 所以  f(x)=3x2-2x.

又因为点均在函数的图像上,所以=3n2-2n.

当n≥2时,an=Sn-Sn-1=(3n2-2n)-

=6n-5.

当n=1时,a1=S1=3×12-2=6×1-5,所以,an=6n-5 (

(Ⅱ)由(Ⅰ)

得知

故Tn

(1-

因此,要使(1-)<)成立的m,必须且仅须满足,即m≥10,所以满足要求的最小正整数m为10.

21.(1)   

        

   

 (2)由

    令得,增区间为

减区间为

   

2

 

+

0

0

+

 

    由表可知:当时,

   

        解得:

    的取值范围为

22.(1)

   (2)

 

 


同步练习册答案