C. D. 查看更多

 

题目列表(包括答案和解析)

D、C、B在地面同一直线上,DC=100米,从D、C两地测得A的仰角分别为30°和45°,则A点离地面的高AB等于
50(
3
+1)
50(
3
+1)
.米.

查看答案和解析>>

.如图是函数的图象,则其解析式是(    )

       A.      

B.

       C.

D.

查看答案和解析>>

C

[解析] 由基本不等式,得abab,所以ab,故B错;≥4,故A错;由基本不等式得,即,故C正确;a2b2=(ab)2-2ab=1-2ab≥1-2×,故D错.故选C.

查看答案和解析>>


.本小题满分15分)
如图,已知椭圆E,焦点为,双曲线G的顶点是该椭圆的焦点,设是双曲线G上异于顶点的任一点,直线与椭圆的交点分别为ABCD,已知三角形的周长等于,椭圆四个顶点组成的菱形的面积为.

(1)求椭圆E与双曲线G的方程;
(2)设直线的斜率分别为,探求
的关系;
(3)是否存在常数,使得恒成立?
若存在,试求出的值;若不存在, 请说明理由.

查看答案和解析>>

定义域为R的函数满足,且当时,,则当时,的最小值为( )

A B C D

 

查看答案和解析>>

                     

一、选择题:本大题主要考查基本知识和基本运算.共12小题,每小题5分,满分60分.

    题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

A

B

A

B

C

D

C

B

D

C

C

二、填空题:本大题主要考查基本知识和基本运算.本大题共4小题,每小题4分,满分16

分.13.      14.    15.     16.

三、解答题:本大题共6小题,满分74分.解答须写出文字说明、证明过程和演算步骤.

17.(本小题满分12分)          

解:(1)∵

                                        …… 2分

                                   …… 4分       

             .                                  …… 6分

.                                             …… 8分

(2) 当时, 取得最大值, 其值为2 .               ……10分

此时,即Z.                 ……12分

18. (本小题满分12分)

解:(1) 由频率分布条形图知,抽取的学生总数为人.         ……4分   

∵各班被抽取的学生人数成等差数列,设其公差为,

=100,解得.

∴各班被抽取的学生人数分别是22人,24人,26人,28人.     ……8分

(2) 在抽取的学生中,任取一名学生, 则分数不小于90分的概率为0.35+0.25+0.1+0.05=0.75.……12分

19.(本小题满分14分)解:(1)∵ ⊥平面平面,     

.                                                …… 2分   

⊥平面,                                        …… 4分

平面,∴ .                                    …… 6分

(2)法1: 取线段的中点的中点,连结,

是△中位线.

,               ……8分

.

∴ 四边形是平行四边形,            ……10分

.

平面平面

∥平面.                                        

∴ 线段的中点是符合题意要求的点.                      ……12分

 法2: 取线段的中点的中点,连结,

是△的中位线.

,                 

平面, 平面,

平面.                         …… 8分

.∴ 四边形是平行四边形,             

平面平面

∥平面.                                        ……10分

,∴平面平面.∵平面,

∥平面.                                         

∴ 线段的中点是符合题意要求的点.                     ……12分

20、(本小题满分12分)

解:解:(1)

    ①式 …………1分

  …………3分

由条件   ②式…………5分

由①②式解得

(2)

  …………8分

经检验知函数

的取值范围。 …………12分

21. (本小题满分12分)

(1) 解:当时,.                                        ……1分

   当时,

.                                        ……3分

不适合上式,

                                       ……4分

(2)证明: ∵.

时,                                         ……6分

时,,          ①

.   ②

①-②得:

                

,                             ……8分

此式当时也适合.

N.                                            ∵,∴.                                 ……10分

时,

.                                     ∵,∴.           故,即.

综上,.                              ……12分

22. (本小题满分14分)

解:(1)依题意知,                                      …… 2分           

    ∵,.                            …… 4分

∴所求椭圆的方程为.                               …… 6分

(2)∵ 点关于直线的对称点为

                                       …… 8分

解得:.                            …… 10分

 

.                                              …… 12分

∵ 点在椭圆:上,∴, 则.

的取值范围为.                                ……14分

 

 

 

 

 


同步练习册答案