如图.椭圆 与过点A的直线有且只有一个公共点M .且椭圆的离心率 .(1)求椭圆的方程,(2)设F1 .F2 分别为椭圆的左.右焦点. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分).

如图,已知某椭圆的焦点是F1(-4,0)、F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1),C(x2,y2)满足条件:|F2A|、|F2B|、|F2C|成等差数列.

 

(1)求该弦椭圆的方程;

(2)求弦AC中点的横坐标;

(3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.

 

查看答案和解析>>

(本小题满分10分) 如图,已知椭圆C,经过椭圆的右焦点F且斜率为的直线l交椭圆C于A、B两点,M为线段AB的中点,设O为椭圆的中心,射线OM交椭圆于N点.(I)是否存在,使对任意,总有成立?若存在,求出所有的值;

(II)若,求实数的取值范围.

 

查看答案和解析>>

(本小题满分10分)如图,椭圆C: 的焦距为2,离心率为

(1)求椭圆C的方程

(2)设是过原点的直线,是与垂直相交于P点且与椭圆相交于A、B两点的直线,,是否存在上述直线使成立?若存在,求出直线的方程;若不存在,请说明理由。

查看答案和解析>>

(本小题满分12分).
如图,已知某椭圆的焦点是F1(-4,0)、F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1),C(x2,y2)满足条件:|F2A|、|F2B|、|F2C|成等差数列.

(1)求该弦椭圆的方程;
(2)求弦AC中点的横坐标;
(3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.

查看答案和解析>>

(本小题满分10分) 如图,已知椭圆C,经过椭圆的右焦点F且斜率为的直线l交椭圆C于A、B两点,M为线段AB的中点,设O为椭圆的中心,射线OM交椭圆于N点.(I)是否存在,使对任意,总有成立?若存在,求出所有的值;
(II)若,求实数的取值范围.

查看答案和解析>>

1―5、  CDDCA   6―10、DABAB    11、    12、1,  9

13:因为方程x 2 + mx + 1=0有两个不相等的实根,

所以Δ1=m 2 ? 4>0,  ∴m>2或m < ? 2               

又因为不等式4x 2 +4(m ? 2)x + 1>0的解集为R,

所以Δ2=16(m ? 2) 2? 16<0,   ∴1< m <3            

因为pq为真,pq为假,所以pq为一真一假, 

(1)当p为真q为假时,

(2)当p为假q为真时,    

综上所述得:m的取值范围是

14解:  直线方程为y=-x+4,联立方程,消去y得,.

设A(),B(),得

所以:,

由已知可得+=0,从而16-8p=0,得p=2.

所以抛物线方程为y2=4x,焦点坐标为F(1,0)

15、解(Ⅰ) AC与PB所成角的余弦值为.

 (Ⅱ)N点到AB、AP的距离分别为1,.

16解:   (1); (2)略

17、6        18、①②③⑤         19、B     20、B

21、解:(1)略  (2)

22、解:(1)设双曲线C的渐近线方程为y=kx,则kx-y=0

∵该直线与圆 相切,∴双曲线C的两条渐近线方程为y=±x.

故设双曲线C的方程为.又双曲线C的一个焦点为

∴双曲线C的方程为:.

(2)由.令

∵直线与双曲线左支交于两点,等价于方程f(x)=0在上有两个

不等负实根.

因此,解得..                       

(3). ∵ AB中点为

∴直线l的方程为:. 令x=0,得

,∴,∴.     

 

 

 

 

 

 


同步练习册答案