题目列表(包括答案和解析)
(本小题满分12分).
如图,已知某椭圆的焦点是F1(-4,0)、F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1),C(x2,y2)满足条件:|F2A|、|F2B|、|F2C|成等差数列.
(1)求该弦椭圆的方程;
(2)求弦AC中点的横坐标;
(3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.
(本小题满分10分) 如图,已知椭圆C:,经过椭圆的右焦点F且斜率为的直线l交椭圆C于A、B两点,M为线段AB的中点,设O为椭圆的中心,射线OM交椭圆于N点.(I)是否存在,使对任意,总有成立?若存在,求出所有的值;
(II)若,求实数的取值范围.
(本小题满分10分)如图,椭圆C: 的焦距为2,离心率为。
(1)求椭圆C的方程
(2)设是过原点的直线,是与垂直相交于P点且与椭圆相交于A、B两点的直线,,是否存在上述直线使成立?若存在,求出直线的方程;若不存在,请说明理由。
1―5、 CDDCA 6―10、DABAB 11、 12、1, 9
13解:因为方程x 2 + mx + 1=0有两个不相等的实根,
所以Δ1=m 2 ? 4>0, ∴m>2或m < ? 2
又因为不等式4x 2 +4(m ? 2)x + 1>0的解集为R,
所以Δ2=16(m ? 2) 2? 16<0, ∴1< m <3
因为p或q为真,p且q为假,所以p与q为一真一假,
(1)当p为真q为假时,
(2)当p为假q为真时,
综上所述得:m的取值范围是或
14、解: 直线方程为y=-x+4,联立方程,消去y得,.
设A(),B(),得
所以:,
由已知可得+=0,从而16-8p=0,得p=2.
所以抛物线方程为y2=4x,焦点坐标为F(1,0)
15、解(Ⅰ) AC与PB所成角的余弦值为.
(Ⅱ)N点到AB、AP的距离分别为1,.
16解: (1); (2)略
17、6 18、①②③⑤ 19、B 20、B
21、解:(1)略 (2)
22、解:(1)设双曲线C的渐近线方程为y=kx,则kx-y=0
∵该直线与圆 相切,∴双曲线C的两条渐近线方程为y=±x.
故设双曲线C的方程为.又双曲线C的一个焦点为,
∴,∴双曲线C的方程为:.
(2)由得.令
∵直线与双曲线左支交于两点,等价于方程f(x)=0在上有两个
不等负实根.
因此,解得..
(3). ∵ AB中点为,
∴直线l的方程为:. 令x=0,得.
∵,∴,∴.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com