题目列表(包括答案和解析)
设、
是两条不同的直线,
、
是两个不同的平面.考查下列命题,其中正确的命题是( )
A. B.
C. D.
设、
是两条不同的直线,
、
是两个不同的平面,则下列命题正确的是( )
A.若则
B.若
则
C.若则
D.若
则
设、
是两条不同的直线,
、
是两个不同的平面.下列四个命题中,正确的是(
)
A.,
,则
B.,则
C.,
,则
D.,
,则
设、
是两条不同的直线,
、
是两个不同的平面,则下列正确的个数为:( )
①若,则
; ②若
,则
;
③若,则
或
;④若
,则
A.1 B.2 C.3 D.4
设、
是两条不同的直线,
、
是两个不同的平面,给出下列结论:
①∥
,
?
∥
;
②∥
,
∥
,
?
∥
;
③=
,
∥
,
∥
?
∥
;
④∥
,
?
∥
.
其中正确的有( )
A.1个 B.2个 C.3个 D.4个
一、选择题 CAADD ABDAB CB
二、填空题 .
.
.
.
三、解答题
.
的周期为
,最大值为
.
令
,
得,
.
∴的单调减区间为
.
.
事件
,
表示甲以
获胜;
表示乙以
获胜,
、
互斥,
∴
.
事件
,
表示甲以
获胜;
表示甲以
获胜,
、
互斥,
∴
延长
、
交于
,则
.
连结,并延长交
延长线于
,则
,
,
在
中,
为中位线,
,
又,
∴.
∵
中,
,
∴.
即,又
,
,
∴,∴
,
∴为平面
与平面
所成二面角的平面角。
又,
∴所求二面角大小为.
.
由
,
,
知,
,同理
,
.
又,
∴构成以
为首项,以
为公比的等比数列。
∴,即
.
.
.
,且
的图象经过点
和
,
∴,
为
的两根.
∴
∴
由
解得
∴
要使对
,不等式
恒成立,
只需即可.
∵,
∴在
上单调递减,在
上单调递增,在
上单调递减.
又,
,
∴,
∴,
解得,即为
的取值范围.
.
由题意知,椭圆
的焦点
,
,顶点
,
,
∴双曲线中
,
,
.
∴的方程为:
.
联立
,得
,
∴
且
,
设,
,
则,
∴.
又,即
,
∴,
即.
∴,
,
由①②得的范围为
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com