... ... 查看更多

 

题目列表(包括答案和解析)

8、α,β,γ为不重合的平面,l,m,n表示直线,下列叙述正确的序号是
①②③

①若P∈α,Q∈α,则PQ?α;②若AB?α,AB?β,则A∈(α∩β)且B∈(α∩β);
③若α∥β且β∥γ,则α∥γ;④若l⊥m且m⊥n,则l⊥n.

查看答案和解析>>

α,β,γ是三个平面,a,b是两条直线,有下列三个条件:①a∥γ,b?β;②a∥γ,b∥β;③b∥β,a?γ.
如果命题“α∩β=a,b?γ,且
①③
①③
,则a∥b”为真命题,则可以在横线处填入的条件是
①③
①③

查看答案和解析>>

,求

查看答案和解析>>

分别是棱长为的正方体的中点.

(1)求证:平面

(2)求长;

(3)求证:平面

查看答案和解析>>

分别是棱长为的正方体的中点.

(1)求证:平面

(2)求长;

(3)求证:平面

查看答案和解析>>

一、选择题 CAADD    ABDAB   CB

二、填空题               

三、解答题

     

               

               

               

       的周期为,最大值为

      

          得

         ∴的单调减区间为

事件表示甲以获胜;表示乙以获胜,互斥,

    ∴

  

事件表示甲以获胜;表示甲以获胜, 互斥,

   延长交于,则

      连结,并延长交延长线于,则

      在中,为中位线,

      又

       ∴

      中,

,又

,∴

为平面与平面所成二面角的平面角。

∴所求二面角大小为

    知,同理

    又

构成以为首项,以为公比的等比数列。

,即

     

     

     

     

,且的图象经过点

     ∴的两根.

     ∴

   ∴

要使对,不等式恒成立,

只需即可.

上单调递减,在上单调递增,在上单调递减.

解得,即为的取值范围.

由题意知,椭圆的焦点,顶点

     ∴双曲线

     ∴的方程为:

联立,得

,即

由①②得的范围为

 

 

 

 


同步练习册答案