题目列表(包括答案和解析)
..如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求M在AB的延长线上,N在AD的延长线上,且对角线MN过C点。已知AB=3米,AD=2米。
(1)设(单位:米),要使花坛AMPN的面积大于32平方米,求的取值范围;
..(本小题满分12分)
已知:,,
函数.
(1)化简的解析式,并求函数的单调递减区间;
(2)在△ABC中,分别是角A,B,C的对边,已知,△ABC的面积为,求的值.
..在中,分别为内角所对的边,且.
现给出三个条件:①; ②;③.试从中选出两个可以确定的条件,并以此为依据求的面积.(只需写出一个选定方案即可)你选择的条件是 (用序号填写);由此得到的的面积为
..(满分8分)已知数列,
(1)计算
(2)根据(1)的计算结果,猜想的表达式,并用数学归纳法进行证明。
..(本小题满分12分)
数列的各项均为正数,为其前项和,对于任意,总有成等差数列.
(1)求数列的通项公式;
(2)设,数列的前项和为,求证:.
一、选择题 CAADD ABDAB CB
二、填空题 . . . .
三、解答题
.
的周期为,最大值为.
令,
得,.
∴的单调减区间为.
.事件,表示甲以获胜;表示乙以获胜,、互斥,
∴
.
事件,表示甲以获胜;表示甲以获胜, 、互斥,
∴
延长、交于,则.
连结,并延长交延长线于,则,,
在中,为中位线,,
又,
∴.
∵中,,
∴.
即,又,,
∴,∴,
∴为平面与平面所成二面角的平面角。
又,
∴所求二面角大小为.
.由,,
知,,同理,.
又,
∴构成以为首项,以为公比的等比数列。
∴,即.
.
.,且的图象经过点和,
∴,为的两根.
∴
∴
由
解得
∴
要使对,不等式恒成立,
只需即可.
∵,
∴在上单调递减,在上单调递增,在上单调递减.
又,,
∴,
∴,
解得,即为的取值范围.
.由题意知,椭圆的焦点,,顶点,,
∴双曲线中,,.
∴的方程为:.
联立,得,
∴
且,
设,,
则,
∴.
又,即,
∴,
即.
∴,
,
由①②得的范围为.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com