1.第Ⅱ卷共6页.用钢笔或圆珠笔直接写在试题卷上. 查看更多

 

题目列表(包括答案和解析)

(14分)已知函数f(x)=在定义域内为奇函数,

且f(1)=2,f()=;

(1)确定函数的解析式;

(2)用定义证明f(x)在[1,+∞)上是增函数;

第6页(共6页)

 
(3)解不等式f(t2+1)+f(-3+3t-2t2)<0.

查看答案和解析>>

 设函数.

      (Ⅰ)求的单调区间和极值;

(Ⅱ)是否存在实数,使得关于的不等式的解集为?若存在,求的取值范围;若不存在,试说明理由.

 

 

 

 

 

 

第5页(共6页)

 
 

 

查看答案和解析>>

   如图,在底面为直角梯形的四棱锥平面

⑴求证:

⑵求直线与平面所成的角;

⑶设点在棱上,

∥平面,求的值.

 

 

第4页(共6页)

 
 

 

查看答案和解析>>

 对于给定数列,如果存在实常数使得对于任意都成立,我们称数列是 “类数列”.

(Ⅰ)已知数列是 “类数列”且求它对应的实常数的值;

(Ⅱ)若数列满足,求数列的通项公式.并判断是否为“类数列”,说明理由.

 

第3页(共6页)

 
 

 

查看答案和解析>>

 等差数列{}前n项和为,满足,则下列结论中正确的是(     )

第1页(共6页)

 
A、中的最大值      B、中的最小值      C、=0       D、=0

 

查看答案和解析>>

一、选择题 CAADD    ABDAB   CB

二、填空题               

三、解答题

     

               

               

               

       的周期为,最大值为

      

          得

         ∴的单调减区间为

事件表示甲以获胜;表示乙以获胜,互斥,

    ∴

  

事件表示甲以获胜;表示甲以获胜, 互斥,

   延长交于,则

      连结,并延长交延长线于,则

      在中,为中位线,

      又

       ∴

      中,

,又

,∴

为平面与平面所成二面角的平面角。

∴所求二面角大小为

    知,同理

    又

构成以为首项,以为公比的等比数列。

,即

     

     

     

     

,且的图象经过点

     ∴的两根.

     ∴

   ∴

要使对,不等式恒成立,

只需即可.

上单调递减,在上单调递增,在上单调递减.

解得,即为的取值范围.

由题意知,椭圆的焦点,顶点

     ∴双曲线

     ∴的方程为:

联立,得

,即

由①②得的范围为

 

 

 

 


同步练习册答案