题目列表(包括答案和解析)
(14分)已知函数f(x)=在定义域内为奇函数,
且f(1)=2,f()=;
(1)确定函数的解析式;
(2)用定义证明f(x)在[1,+∞)上是增函数;
|
设函数.
(Ⅰ)求的单调区间和极值;
(Ⅱ)是否存在实数,使得关于的不等式的解集为?若存在,求的取值范围;若不存在,试说明理由.
|
如图,在底面为直角梯形的四棱锥中,平面,,,.
⑴求证:;
⑵求直线与平面所成的角;
⑶设点在棱上,,
若∥平面,求的值.
|
对于给定数列,如果存在实常数,使得对于任意都成立,我们称数列是 “类数列”.
(Ⅰ)已知数列是 “类数列”且,求它对应的实常数的值;
(Ⅱ)若数列满足,,求数列的通项公式.并判断是否为“类数列”,说明理由.
|
等差数列{}前n项和为,满足,则下列结论中正确的是( )
|
一、选择题 CAADD ABDAB CB
二、填空题 . . . .
三、解答题
.
的周期为,最大值为.
令,
得,.
∴的单调减区间为.
.事件,表示甲以获胜;表示乙以获胜,、互斥,
∴
.
事件,表示甲以获胜;表示甲以获胜, 、互斥,
∴
延长、交于,则.
连结,并延长交延长线于,则,,
在中,为中位线,,
又,
∴.
∵中,,
∴.
即,又,,
∴,∴,
∴为平面与平面所成二面角的平面角。
又,
∴所求二面角大小为.
.由,,
知,,同理,.
又,
∴构成以为首项,以为公比的等比数列。
∴,即.
.
.,且的图象经过点和,
∴,为的两根.
∴
∴
由
解得
∴
要使对,不等式恒成立,
只需即可.
∵,
∴在上单调递减,在上单调递增,在上单调递减.
又,,
∴,
∴,
解得,即为的取值范围.
.由题意知,椭圆的焦点,,顶点,,
∴双曲线中,,.
∴的方程为:.
联立,得,
∴
且,
设,,
则,
∴.
又,即,
∴,
即.
∴,
,
由①②得的范围为.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com