题目列表(包括答案和解析)
设
(1)求f(x)的周期和最大值;
(2)若x是第三象限角,且,求tanx的值.
函数
(Ⅰ)求函数的周期和最大值;
(Ⅱ)若将函数按向量平移后得到函数,而且当取得最大值3,求.
已知函数
(Ⅰ)求函数f(x)的周期和最大值;
(Ⅱ)已知f(α)=5,求tanα的值.
最小正周期为π的函数(其中a是小于零的常数,是大于零的常数)的图象按向量,(0<θ<π)平移后得到函数y=f(x)的图象,而函数y=f(x)在实数集上的值域为[-2,2],且在区间上是单调递减函数.
(1)求a、和θ的值;
(2)若角α和β的终边不共线,f(α)+g(α)=f(β)+g(β),求tan(α+β)的值.
已知 , 且
(1)求的周期;
(2)求最大值和此时相应的的值;
(3)求的单调增区间;
一、选择题 CAADD ABDAB CB
二、填空题 . . . .
三、解答题
.
的周期为,最大值为.
令,
得,.
∴的单调减区间为.
.事件,表示甲以获胜;表示乙以获胜,、互斥,
∴
.
事件,表示甲以获胜;表示甲以获胜, 、互斥,
∴
延长、交于,则.
连结,并延长交延长线于,则,,
在中,为中位线,,
又,
∴.
∵中,,
∴.
即,又,,
∴,∴,
∴为平面与平面所成二面角的平面角。
又,
∴所求二面角大小为.
.由,,
知,,同理,.
又,
∴构成以为首项,以为公比的等比数列。
∴,即.
.
.,且的图象经过点和,
∴,为的两根.
∴
∴
由
解得
∴
要使对,不等式恒成立,
只需即可.
∵,
∴在上单调递减,在上单调递增,在上单调递减.
又,,
∴,
∴,
解得,即为的取值范围.
.由题意知,椭圆的焦点,,顶点,,
∴双曲线中,,.
∴的方程为:.
联立,得,
∴
且,
设,,
则,
∴.
又,即,
∴,
即.
∴,
,
由①②得的范围为.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com