(2)求本场比赛中甲获胜的事件的概率. 得分评卷人 查看更多

 

题目列表(包括答案和解析)

(12分)某校举行一次乒乓球比赛,在单打比赛中,甲、乙两名同学进入决赛,根据以往经验,单局比赛甲胜乙的概率为,本场比赛采用五局三胜制,即先胜三局者获胜,比赛结束.设各局比赛相互间没有影响.

(1)试求本场比赛中甲胜两局最终乙获胜的事件的概率;

(2)令为本场比赛的局数,求的概率分布和数学期望.

查看答案和解析>>

一、选择题 CAADD    ABDAB   CB

二、填空题               

三、解答题

     

               

               

               

       的周期为,最大值为

      

          得

         ∴的单调减区间为

事件表示甲以获胜;表示乙以获胜,互斥,

    ∴

  

事件表示甲以获胜;表示甲以获胜, 互斥,

   延长交于,则

      连结,并延长交延长线于,则

      在中,为中位线,

      又

       ∴

      中,

,又

,∴

为平面与平面所成二面角的平面角。

∴所求二面角大小为

    知,同理

    又

构成以为首项,以为公比的等比数列。

,即

     

     

     

     

,且的图象经过点

     ∴的两根.

     ∴

   ∴

要使对,不等式恒成立,

只需即可.

上单调递减,在上单调递增,在上单调递减.

解得,即为的取值范围.

由题意知,椭圆的焦点,顶点

     ∴双曲线

     ∴的方程为:

联立,得

,即

由①②得的范围为

 

 

 

 


同步练习册答案