(2) 求平面与平面 查看更多

 

题目列表(包括答案和解析)

平面上三个力
F1
F2
F3
作用于一点且处于平衡状态,|
F1
|=1 N
|
F2
|=
6
+
2
2
 
N
F1
F2
的夹角为45°,求:
(1)
F3
的大小;
(2)
F3
F1
夹角的大小.

查看答案和解析>>

平面直角坐标系xOy中,已知⊙M经过点F1(0,-c),F2(0,c),A(
3
c,0)三点,其中c>0.
(1)求⊙M的标准方程(用含c的式子表示);
(2)已知椭圆
y2
a2
+
x2
b2
=1(a>b>0)
(其中a2-b2=c2)的左、右顶点分别为D、B,⊙M与x轴的两个交点分别为A、C,且A点在B点右侧,C点在D点右侧.
①求椭圆离心率的取值范围;
②若A、B、M、O、C、D(O为坐标原点)依次均匀分布在x轴上,问直线MF1与直线DF2的交点是否在一条定直线上?若是,请求出这条定直线的方程;若不是,请说明理由.

查看答案和解析>>

平面向量
a
=(3,-4),
b
=(2,x),
c
=(2,y)
,已知
a
b
a
c
,求
b
c
的坐标及
b
c
夹角.

查看答案和解析>>

平面直角坐标系中,O为坐标原点,给定两点A(1,0),B(0,-2),点C满足
OC
OA
OB
,其中α,β∈R,且α-2β=1.
(Ⅰ)求点C的轨迹方程;
(Ⅱ)设点C的轨迹与双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
交于两点M,N,且以MN为直径的圆过原点,求证:
1
a2
-
1
b2
为定值.

查看答案和解析>>

平面直角坐标系x0y中,动点P到直线x=-2的距离比它到点F(1,0)的距离大1.
(1)求动点P的轨迹C;
(2)求曲线C与直线x=4所围成的区域的面积.

查看答案和解析>>

一、选择题 CAADD    ABDAB   CB

二、填空题               

三、解答题

     

               

               

               

       的周期为,最大值为

      

          得

         ∴的单调减区间为

事件表示甲以获胜;表示乙以获胜,互斥,

    ∴

  

事件表示甲以获胜;表示甲以获胜, 互斥,

   延长交于,则

      连结,并延长交延长线于,则

      在中,为中位线,

      又

       ∴

      中,

,又

,∴

为平面与平面所成二面角的平面角。

∴所求二面角大小为

    知,同理

    又

构成以为首项,以为公比的等比数列。

,即

     

     

     

     

,且的图象经过点

     ∴的两根.

     ∴

   ∴

要使对,不等式恒成立,

只需即可.

上单调递减,在上单调递增,在上单调递减.

解得,即为的取值范围.

由题意知,椭圆的焦点,顶点

     ∴双曲线

     ∴的方程为:

联立,得

,即

由①②得的范围为

 

 

 

 


同步练习册答案