19.已知a≥.f(x)=-a2x2+ax+c. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)
已知A、B、C是直线l上的三点,O是直线l外一点,向量满足
=[f(x)+2f′(1)]-ln(x+1)
(Ⅰ)求函数y=f(x)的表达式;      (Ⅱ)若x>0,证明:f(x)>
(Ⅲ)若不等式x2≤f(x2)+m2-2m-3对x∈[-1,1]恒成立,求实数m的取值范围。

查看答案和解析>>

(本小题满分12分) 已知a∈R,求函数f(x)=x2eax的单调区间.

 

查看答案和解析>>

(本小题满分12分) 已知a∈R,求函数f(x)=x2eax的单调区间.

查看答案和解析>>

(本小题满分12分)已知A(1,f′(1))是函数y=f(x)的导函数图像上的一点,点B的坐标为(x,㏑(x+1)),向量=(1,1),设f(x)=·
(1)求函数y=f(x)的表达式;
(2)若x∈[-1,1]时,不等式x≤f(x)+m-m-3都恒成立,求实数m的取值范围.

查看答案和解析>>

(本小题满分12分)
已知A、B、C是直线l上的三点,O是直线l外一点,向量满足
=[f(x)+2f′(1)]-ln(x+1)
(Ⅰ)求函数y=f(x)的表达式;      (Ⅱ)若x>0,证明:f(x)>
(Ⅲ)若不等式x2≤f(x2)+m2-2m-3对x∈[-1,1]恒成立,求实数m的取值范围。

查看答案和解析>>

一、选择题:

1C  2.D  3.D  4.C  5. B  6.C   7. C   8.C  9.  A 

1,3,5

二、填空:

13..y=54.8(1+x%)16   14.(0,)  15.   16.

三、解答题:本大题共6小题,共74分,解答时应写出必要的文字说明、证明过程或演算步骤。

17.解(1)

(2)

1,3,5

18.解:(1)当时.…………2分

,连.

⊥面,知⊥面.…………3分

中点时,中点.

∵△为正三角形,

,∴…………5分

…………6分

   (2)过,连结,则

∴∠为二面角P―AC―B的平面角,

…………8分

    …………10分

……12分

19.解:(1)fx)=-a2x2+c+,……………(1分)

a,∴∈(0,1,………………………………………(2分)

x∈(0,1时,[fx)]max=c+,……………………………(3分)

fx)≤1,则[fx)]max=c+≤1,即c,……………(5分)

∴对任意x∈[0,1],总有fx)≤1成立时,可得c.……(6分)

(2)∵a,∴>0………………………(7分)

又抛物线开口向下,fx)=0的两根在[0,内,…………(8分)

…………(11分)

 

所求实数c的取值范围为

20.解:(1)当时,,不成等差数列。…(1分)

时,  ,

,  ∴,∴ …………(4分)

…………………….5分

(2)………………(6分)

……………………(7分)

………(8分)

,∴……………(10分)

 ∴的最小值为……………….12分

21.解:(1)

……………………2分

是增函数

是减函数……………………4分

……6分

(2)因为,所以

……………………8分

所以的图象在上有公共点,等价于…………10分

解得…………………12分

22解:(1)由题意:∵|PA|=|PB|且|PB|+|PF|=r=8

∴|PA|+|PF|=8>|AF|

∴P点轨迹为以A、F为焦点的椭圆…………………………3分

设方程为

………………………5分

(2)假设存在满足题意的直线l,其斜率存在,设为k,设

 

 

 

 


同步练习册答案