.求的值及集合. 查看更多

 

题目列表(包括答案和解析)

集合A是由适合以下性质的函数f(x)构成的:对于定义域内任意两个不相等的实数x1,x2,都有
1
2
[f(x1)+f(x2)]>f(
x1+x2
2
)

(1)试判断f(x)=x2及g(x)=log2x是否在集合A中,并说明理由;
(2)设f(x)∈A且定义域为(0,+∞),值域为(0,1),f(1)>
1
2
,试求出一个满足以上条件的函数f (x)的解析式.

查看答案和解析>>

集合A是由具备下列性质的函数f(x)组成的:
①函数f(x)的定义域是[0,+∞);
②函数f(x)的值域是[-2,4);
③函数f(x)在[0,+∞)上是增函数,分别探究下列小题:
(1)判断函数f1(x)=
x
-2(x≥0)及f2(x)=4-6•(
1
2
x(x≥0)是否属于集合A?并简要说明理由;
(2)对于(1)中你认为属于集合A的函数f(x),不等式f(x)+f(x+2)<2f(x+1)是否对于任意的x≥0恒成立?若不成立,为什么?若成立,请说明你的结论.
(3)g(x)=x+2a f1(x)求g(x)的最小值用a表示.

查看答案和解析>>

集合A是由适合以下性质的函数f(x)组成的:对于任意的x≥0,f(x)∈(1,4],且f(x)在[0,+∞)上是减函数.
(1)判断函数f1(x)=2-数学公式及f2(x)=1+3•(数学公式(x≥0)是否在集合A中?试说明理由;
(2)对于(1)中你认为是集合A中的函数f(x),不等式f(x)+f(x+2)≤k对于任意的x≥0总成立.求实数k的取值范围.

查看答案和解析>>

集合A是由适合以下性质的函数f(x)构成的:对于定义域内任意两个不相等的实数x1,x2,都有数学公式
(1)试判断f(x)=x2及g(x)=log2x是否在集合A中,并说明理由;
(2)设f(x)∈A且定义域为(0,+∞),值域为(0,1),数学公式,试求出一个满足以上条件的函数f (x)的解析式.

查看答案和解析>>

集合A是由适合以下性质的函数f(x)组成的:对于任意的x≥0,f(x)∈(1,4],且f(x)在[0,+∞)上是减函数.
(1)判断函数f1(x)=2-
x
及f2(x)=1+3•(
1
2
)x
(x≥0)是否在集合A中?试说明理由;
(2)对于(1)中你认为是集合A中的函数f(x),不等式f(x)+f(x+2)≤k对于任意的x≥0总成立.求实数k的取值范围.

查看答案和解析>>

(必修1部分,满分100分)

一、填空题(每小题5分,共45分)

1.     2.             3.                      4.         5.

6.                  7.       8.          9.

二、解答题(共55分)

10.

11.解:⑴设,由,得,故

因为,所以

,所以,即,所以

⑵由题意得上恒成立,即上恒成立.

,其图象的对称轴为直线

所以上递减,所以当时,有最小值.故

12.解:⑴设一次订购量为个时,零件的实际出厂价恰好为元,则(个)

⑶当销售一次订购量为个时,该工厂的利润为,则

故当时,元;元.

13.解:⑴由已知条件得对定义域中的均成立.

 ,即.            

对定义域中的均成立.  ,即(舍正),所以.       

⑵由⑴得.设

时,.                            

时,,即.时,上是减函数.

同理当时,上是增函数.

函数的定义域为

.为增函数,要使值域为

(无解)            

,              为减函数,

要使的值域为,  则.               

 

(必修4部分,满分60分)

一、填空题(每小题6分,共30分)

1.        2.           3.        4.      5. ②③

二、解答题(共30分)

6. ⑴

⑵对称中心:,增区间:

.

7.解:⑴

时,则时,

时,则时,

时,则时,

,则

⑵若,则;若解之,得(舍),;若,则(舍).

综上所述,

⑶当时,,即当时,

时,,即当时,

 

 


同步练习册答案