题目列表(包括答案和解析)
(本小题满分14分)
已知函数。
(1)证明:
(2)若数列的通项公式为,求数列 的前项和;w.w.w.k.s.5.u.c.o.m
(3)设数列满足:,设,
若(2)中的满足对任意不小于2的正整数,恒成立,
试求的最大值。
(本小题满分14分)已知,点在轴上,点在轴的正半轴,点在直线上,且满足,. w.w.w.k.s.5.u.c.o.m
(Ⅰ)当点在轴上移动时,求动点的轨迹方程;
(Ⅱ)过的直线与轨迹交于、两点,又过、作轨迹的切线、,当,求直线的方程.(本小题满分14分)设函数
(1)求函数的单调区间;
(2)若当时,不等式恒成立,求实数的取值范围;w.w.w.k.s.5.u.c.o.m
(3)若关于的方程在区间上恰好有两个相异的实根,求实数的取值范围。(本小题满分14分)
已知,其中是自然常数,
(1)讨论时, 的单调性、极值;w.w.w.k.s.5.u.c.o.m
(2)求证:在(1)的条件下,;
(3)是否存在实数,使的最小值是3,若存在,求出的值;若不存在,说明理由.
(本小题满分14分)
设数列的前项和为,对任意的正整数,都有成立,记。
(I)求数列的通项公式;
(II)记,设数列的前项和为,求证:对任意正整数都有;
(III)设数列的前项和为。已知正实数满足:对任意正整数恒成立,求的最小值。
一.选择题 1-5 6-10 BCDCA DAABC
二.填空题 11. ; 12. 2 ; 13. 2236 ; 14. ;
15.
三、解答题
16.【解】(Ⅰ)由整理得,
即,------2分
∴, -------5分
∵,∴。 -------7分
(Ⅱ)∵,∴最长边为, --------8分
∵,∴, --------10分
∴为最小边,由余弦定理得,解得,
∴,即最小边长为1 --------13分
17.【解】(Ⅰ)由茎叶图可求出10次记录下的有记号的红鲫鱼与中国金鱼数目的平均数均为20,故可认为池塘中的红鲫鱼与中国金鱼的数目相同,设池塘中两种鱼的总数是,则有
, ------------4分
即 ,
所以,可估计水库中的红鲫鱼与中国金鱼的数量均为25000. ------------7分
(Ⅱ)显然,, -----------9分
其分布列为
0
1
2
3
4
5
---------11分
数学期望. -----------13分
18.【解】(Ⅰ)∵,∴,--------2分
要使有极值,则方程有两个实数解,
从而△=,∴. ------------4分
(Ⅱ)∵在处取得极值,
∴,
∴. ------------6分
∴,
∵,
∴当时,,函数单调递增,
当时,,函数单调递减.
∴时,在处取得最大值, ------------10分
∵时,恒成立,
∴,即,
∴或,即的取值范围是.------------13分
19.【解】法一:(Ⅰ)∵,∴.
∵三棱柱中,平面.
,∴平面.
∵平面,∴,而,则.---------2分
在与中,∴,--------4分
∴.∴.即.
∵,∴平面. --------------6分
(Ⅱ)如图,设,过作的垂线,垂足为,连,平面,为二面角的平面角. ----------------9分
在中,,,
∴,∴;
在中,,,
∴,
∴.------------11分
∴在中,,.
故锐二面角的余弦值为.
即平面与平面所成的锐二面角的余弦值为. ----------13分
法二:(Ⅰ)∵,∴.
∵三棱柱中平面∴.
∵,∴平面.
以为坐标原点,、、所在的直线分别为轴、轴、轴建立如图所示的空间直角坐标系.---------------------2分
易求得,,,,,,.-----4分
(Ⅰ),,,
∵,,
∴,,即,.
∵,∴平面. ---------------------6分
(Ⅱ)设是平面的法向量,由得
取,则是平面的一个法向量. --------------------9分
又是平面的一个法向量, -----------------11分
.
即平面与平面所成的锐二面角的余弦值为.----------13分
20.【解】(Ⅰ)法1:依题意,显然的斜率存在,可设直线的方程为,
整理得 . ① ---------------------2分
设是方程①的两个不同的根,
∴, ② ----------------4分
且,由是线段的中点,得
,∴.
解得,代入②得,的取值范围是(12,+∞). --------------6分
于是,直线的方程为,即 --------------7分
法2:设,,则有
--------2分
依题意,,∴. ---------------------4分
∵是的中点,
∴,,从而.
又由在椭圆内,∴,
∴的取值范围是. ----------------6分
直线的方程为,即. ----------------7分
(Ⅱ)∵垂直平分,∴直线的方程为,即,
代入椭圆方程,整理得. ③ -----------------9分
又设,的中点为,则是方程③的两根,
∴.-----12分
到直线的距离,故所求的以线段的中点为圆心且与直线相切的圆的方程为:.-----------14分
21.【解】(Ⅰ)由求导得,
∴曲线:在点处的切线方程为,即.
此切线与轴的交点的坐标为,
∴点的坐标为.即. -------------------2分
∵点的坐标为(),在曲线上,所以,
∴曲线:在点处的切线方程为,---4分
令,得点的横坐标为.
∴数列是以2为首项,2为公比的等比数列.
∴(). ---------------------6分
(Ⅱ)设、、,
∵
--------9分==(定值)--------11分
(Ⅲ)设、、
则=
=
--------13分
,
∵为常数,∴=为定值. -----------14分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com