已知:.若数列使得成等差数列. 查看更多

 

题目列表(包括答案和解析)

已知:数列是由正数组成的等差数列,是其前项的和,并且.

(Ⅰ)求数列的通项公式;

(Ⅱ)求不等式对一切均成立最大实数

(Ⅲ)对每一个,在之间插入,得到新数列,设是数列的前项和,试问是否存在正整数,使?若存在求出的值;若不存在,请说明理由.

查看答案和解析>>

已知:f(x)=logax(0<a<1).若数列{an} 使得2,f(a1),f(a2),…,f(an),2n+4(n∈N*)成等差数列.
(1)求数列{an}的通项;
(2)设bn=anf(an),若{bn}的前n项和为Sn,求Sn

查看答案和解析>>

若数列满足条件:存在正整数,使得对一切都成立,则称数列级等差数列.
(1)已知数列为2级等差数列,且前四项分别为,求的值;
(2)若为常数),且级等差数列,求所有可能值的集合,并求取最小正值时数列的前3项和
(3)若既是级等差数列,也是级等差数列,证明:是等差数列.

查看答案和解析>>

若数列满足条件:存在正整数,使得对一切都成立,则称数列级等差数列.
(1)已知数列为2级等差数列,且前四项分别为,求的值;
(2)若为常数),且级等差数列,求所有可能值的集合,并求取最小正值时数列的前3项和
(3)若既是级等差数列,也是级等差数列,证明:是等差数列.

查看答案和解析>>

已知:f(x)=logax(0<a<1).若数列{an} 使得2,f(a1),f(a2),…,f(an),2n+4(n∈N*)成等差数列.
(1)求数列{an}的通项;
(2)设bn=anf(an),若{bn}的前n项和为Sn,求Sn

查看答案和解析>>

一、1.  2.3  3.  4.18   5.   6.55  7.  8.0   9.7    10.0或-2

    11.   12.

二、13.C     14.B     15.D     16.A

三、17.解:(1);

         (2);

         (3)表面积S=48.

18.解:(1) ,

        

(2)

  由,得当时,取得最小值-2

19.解:(1)

       

(2)

,①

,②

②-①,整理,得

20.解:(1),设

        则

任取

时,单调递减;

时,单调递增.

            由

            的值域为.

(2)设

所以单调递减.

         (3)由的值域为:

           所以满足题设仅需:

           解得,.

  21.解:(1)

           又

         (2)应用第(1)小题结论,得取倒数,得

         (3)由正弦定理,原题⇔△ABC中,求证:

         证明:由(2)的结论得,均小于1,

              

              

          (4)如得出:四边形ABCD中,求证:且证明正确给3分;

             如得出:凸n边形A1A2A3┅An中,边长依次为求证:

             且证明正确给4分.

             如能应用到其它内容有创意则给高分.

             如得出:为各项为正数的等差数列,,求证:

             .

 

 

 


同步练习册答案