(2)设数列{bn}满足条件:b1=2.bn+1≥a.求证: ++-+<2. 查看更多

 

题目列表(包括答案和解析)

设数列{an}满足条件:a1=8,a2=0,a3=-7,且数列{an+1-an}(n∈N*)是等差数列.

(1)设cn=an+1-an,求数列{cn}的通项公式;

(2)若bn=2n·cn,求Sn=b1+b2+…+bn

(3)数列{an}的最小项是第几项?并求出该项的值.

查看答案和解析>>

以数列{an}的任意相邻两项为坐标的点Pn(an,an+1)(n∈N)均在一次函数y=2x+k的图象上,数列{bn}满足条件:bn=an+1-an(n∈N,b1≠0),

(1)求证:数列{bn}是等比数列;

(2)设数列{an},{bn}的前n项和分别为Sn,Tn,若S6=T4,S5=-9,求k的值.

查看答案和解析>>

设Sn为数列{an}的前n项和,对任意的n∈N*,都有Sn=(m+1)-man(m为常数,且m>0).

(1)求证:数列{an}是等比数列;

(2)设数列{an}的公比q=f(n),数列{bn}满足b1=2a1,bn=f(bn-1)(n≥2,n∈N*),求数列{bn}的通项公式;

(3)在满足(2)的条件下,求数列的前n项和Tn

查看答案和解析>>

设Sn为数列{an}的前n项和,对任意的n∈N*,都有Sn=(m+1)-man(m为常数,且m>0).

(1)求证:数列{an}是等比数列;

(2)设数列{an}的公比q=f(m),数列{bn}满足b1=2a1,bn=f(bn-1)(n≥2,n∈N*),求数列{bn}的通项公式;

(3)在满足(2)的条件下,求证:数列的前n项和

查看答案和解析>>

设Sn为数列{an}的前n项和,对任意的n∈N+都有Sn=(m+1)-man(m为常数,且m>0).

(1)求证:数列{an}是等比数列;

(2)设数列{an}的公比q=f(m),数列{bn}满足b1=2a1,bn=f(bn-1),(n≥2,n∈N+),求数列{bn}的通项公式;

(3)在满足(2)的条件下,求数列的前n项和Tn

查看答案和解析>>

一、选择题:BBCCD    CCBDC 

二、填空题:

11. -  12.   13.; 14.; 15.

三、解答题:

16.解(1)f(x)=asinωx-acosωx=2asin(ωx-)

由已知知周期T=-=π,     故a=1,ω=2;……………………6分

(2)由f(A)=2,即sin(2A-)=1,又-<2A-<,    则2A-=,解得A==600…8分

故== ===2.……12分

17.A、B、C分别表示事件甲、乙、丙面试合格,则

(1)至少有一人合格的概率P=1-P()=          4分

(2)可能取值0,1,2,3                                         5分

∴分布列为                                                   

0

1

2

3

 P

   9分

 

 

 

                              12分

18解:(1)连接,交于点,连接

则在正方形中,

故在△中,

平面平面,所以,平面

(2),四边形为正方形,故以点为原点,

轴,轴,建立如图所示的空间直角坐标系,

是面的一个法向量

是平面的一个法向量,则,且

,取,得

此时,向量的夹角就等于二面角的平面角

   二面角的余弦值为

19.解:(1)依题意,距离等于到直线的距离,曲线是以原点为顶点,为焦点的抛物线                                                (2分)

  曲线方程是                                     (4分)

(2)设圆心,因为圆

故设圆的方程                       (7分)

得:

设圆与轴的两交点为,则  (10分)

在抛物线上,    (13分)

所以,当运动时,弦长为定值2                           (14分)

20.方程tan2πx-4tanπx+=(tanπx-1)(tanπx-)=0

得tanπx=或tanπx=

(1)当n=1时,x∈[0,1),即πx∈[0,π)

由tanπx=,或tanπx=得πx=或πx=            

故a1=+=;………………2分

当n=2时,x∈[1,2),则πx∈[π,2π)

由tanπx=或tanπx=,得πx=或πx=       

故a1=+=………………4分

当x∈[n-1,n)时,πx∈[(n-1)π,nπ)

由tanπx=,或tanπx=得πx=+(n-1)π或πx=+(n-1)π

得x=+(n-1)或x=+(n-1),     

故an=+(n-1)++(n-1)=2n-………6分

(2)由(1)得bn+1≥a=2bn-……………………8分

即bn+1-≥a=2(bn-)≥22(bn-1-)≥…≥2n(b1-)=2n-1>0……10分

则≤,即≤

++…+≤1++…+=2-<2.……12分

21.解:(1)函数f(x)=ax3+bx2+cx+d是奇函数,则b=d=0,

∴f /(x)=3ax2+c,则

故f(x)=-x3+x;………………………………4分

(2)∵f /(x)=-3x2+1=-3(x+)(x-)

∴f(x)在(-∞,-),(,+∞)上是增函数,在[-,]上是减函数,

由f(x)=0解得x=±1,x=0, 

如图所示,

当-1<m<0时,f(x)max=f(-1)=0;

当0≤m<时,f(x)max=f(m)=-m3+m,

当m≥时,f(x)max=f()=.

故f(x)max=.………………9分

(3)g(x)=(-x),令y=2k-x,则x、y∈R,且2k=x+y≥2,

又令t=xy,则0<t≤k2

故函数F(x)=g(x)?g(2k-x)=(-x)(-y)=+xy-

              =+xy-=+t+2,t∈(0,k2]

当1-4k2≤0时,F(x)无最小值,不合

当1-4k2>0时,F(x)在(0,]上递减,在[,+∞)上递增,

且F(k2)=(-k)2,∴要F(k2)≥(-k)2恒成立,

必须

故实数k的取值范围是(0,)].………………14分

 

 


同步练习册答案