(2)令若的解集为A.且.求的范围 查看更多

 

题目列表(包括答案和解析)

已知函数(a≠0),且F(-1)=0

    (I)若F(x)在x=1处取得极小值-2,求函数F(x)的单调区间:

(Ⅱ)令f(x)= F(x),若,            f ‘    (x)>0的解集为A,且满足A∪(O,1)=(O,+∞),求的取值范围.

查看答案和解析>>

已知函数(a≠0),且F(-1)=0

    (I)若F(x)在x=1处取得极小值-2,求函数F(x)的单调区间:

    (Ⅱ)令f(x)= F(x),若,            f ‘    (x)>0的解集为A,且满足A∪(O,1)=(O,+∞),求的取值范围.

查看答案和解析>>

已知函数F(x)=ax3+bx2+cx(a≠0)且F′(-1)=0.

(1)若F(x)在x=1取得极小值-2,求函数F(x)的单调区间;

(2)令f(x)=F′(x),若f′(x)>0的解集为A,且A∪(0,1)=(0,+∞),求的范围.

查看答案和解析>>

已知h(x)是指数函数,且过点(ln2,2),令f(x)=h(x)+ax.
(I)求f(x)的单调区间;
(II)记不等式h(x)<(1-a)x的解集为P,若M={x|
12
≤x≤2}
且M∪P=P,求实数a的取值范围;
(III)当a=-1时,设g(x)=h(x)lnx,问是否存在x0∈(0,+∞),使曲线C:y=g(x)-f(x)在点x0处的切线斜率与f(x)在R上的最小值相等?若存在,求出符合条件的x0的个数;若不存在,请说明理由.

查看答案和解析>>

已知函数

   (1)若取得极小值-2,求函数的单调区间

   (2)令的解集为A,且,求的范围

查看答案和解析>>

一、选择题(每题5分,共60分)

1―5 ACCBA  6―10 BCABD  11―12 DB

2,4,6

13.   14.   15.   16.①②③

三、解答题(17―21题每小题12分,22题14分,共74分)

17.解:(Ⅰ)

(Ⅱ)

当且仅当时,△ABC面积取最大值,最大值为.

18.解:(Ⅰ)依题意得

(Ⅱ)

19.解法一:(Ⅰ)平面ACE.   

∵二面角D―AB―E为直二面角,且平面ABE.

(Ⅱ)连结BD交AC于C,连结FG,

∵正方形ABCD边长为2,∴BG⊥AC,BG=

平面ACE,

(Ⅲ)过点E作交AB于点O. OE=1.

∵二面角D―AB―E为直二面角,∴EO⊥平面ABCD.

设D到平面ACE的距离为h,

平面BCE, 

解法二:(Ⅰ)同解法一.

(Ⅱ)以线段AB的中点为原点O,OE所在直

线为x轴,AB所在直线为y轴,过O点平行

于AD的直线为z轴,建立空间直角坐标系

O―xyz,如图.

面BCE,BE面BCE,

的中点,

 设平面AEC的一个法向量为

解得

       令是平面AEC的一个法向量.

       又平面BAC的一个法向量为

       ∴二面角B―AC―E的大小为

(III)∵AD//z轴,AD=2,∴

∴点D到平面ACE的距离

20.解:(1)

(2)

,

有最大值;即每年建造12艘船,年利润最大(8分)

(3),(11分)

所以,当时,单调递减,所以单调区间是,且

21.解:(I)∵,且

①④

又由在处取得极小值-2可知②且

将①②③式联立得   (4分)

同理由

的单调递减区间是[-1,1], 单调递增区间是(-∞,1   (6分)

(II)由上问知:,∴

又∵。∴。∴。∴

,∴>0。∴。(8分)

∴当时,的解集是

显然A不成立,不满足题意。

,且的解集是。   (10分)

又由A。解得。(12分)

22.解:(1)设M(xy)是所求曲线上的任意一点,Px1y1)是方程x2 +y2 =4的圆上的任意一点,则

    则有:得,

    轨迹C的方程为

   (1)当直线l的斜率不存在时,与椭圆无交点.

    所以设直线l的方程为y = k(x+2),与椭圆交于A(x1y1)、B(x2y2)两点,N点所在直线方程为

    由

    由△=

    即 …   

    ,∴四边形OANB为平行四边形

    假设存在矩形OANB,则,即

    即

    于是有    得 … 设

即点N在直线上.

 ∴存在直线l使四边形OANB为矩形,直线l的方程为

 

 

 

 


同步练习册答案