(2) 若.求直线PQ的方程. 查看更多

 

题目列表(包括答案和解析)

已知椭圆Γ的方程为(a>b>0),A(0,b) 、B(0,-b)和 Q(a,0)为Γ的三个顶点。
(Ⅰ)若点M满足,求点M的坐标;
(Ⅱ)设直线l1:y=k1x+p交椭圆Γ于C、D两点,交直线l2:y=k2x于点E。若k1·k2=-,证明:E为CD的中点;
(Ⅲ)设点P在椭圆Γ内且不在x轴上,如何作过PQ中点F的直线l,使得l与椭圆Γ的两个交点P1、P2满足?令a=10,b=5,点P的坐标是(-8,-1)。若椭圆Γ上的点P1、P2满足,求点P1、P2的坐标。

查看答案和解析>>

已知椭圆Γ的方程为(a>b>0),A(0,b),B(0,-b)和 Q(a,0)为Γ的三个顶点。
(1)若点M满足,求点M的坐标;
(2)设直线l1:y=k1x+p交椭圆Γ于C,D两点,交直线l2:y=k2x于点E,若,证明:E为CD的中点;
(3)设点P在椭圆Γ内且不在x轴上,如何作过PQ中点F的直线l,使得l与椭圆Γ的两个交点P1,P2满足?令a=10,b=5,点P的坐标是(-8,-1)。若椭圆Γ上的点P1,P2满足,求点P1,P2的坐标。

查看答案和解析>>

已知曲线C:y=x2与直线l:x-y+2=0交于两点A(xA,yA)和B(xB,yB),且xA<xB。记曲线C在点A和点B之间那一段L与线段AB所围成的平面区域(含边界)为D。设点P(s,t)是L上的任一点,且点P与点A和点B均不重合,
(1)若点Q是线段AB的中点,试求线段PQ的中点M的轨迹方程;
(2)若曲线G:x2-2ax+y2-4y+a2+=0与点D有公共点,试求a的最小值。

查看答案和解析>>

如图,P是抛物线C:y=x2上一点,直线l过点P且与抛物线C交于另一点Q,
(Ⅰ)若直线l与过点P的切线垂直,求线段PQ中点M的轨迹方程;
(Ⅱ)若直线l不过原点且与x轴交于点S,与y轴交于点T,试求的取值范围。

查看答案和解析>>

如图,P是抛物线C:y=x2上一点,直线l过点P且与抛物线C交于另一点Q,
(Ⅰ)若直线l与过点P的切线垂直,求线段PQ中点M的轨迹方程;
(Ⅱ)若直线l不过原点且与x轴交于点S,与y轴交于点T,试求的取值范围。

查看答案和解析>>

一、选择题:本小题共10小题,每小题5分,共50分.

题号

1

2

3

4

5

6

7

8

9

10

答案

B

D

B

C

A

C

B

B

A

A

二、填空题:本小题11―13题必答, 14、15小题中选答1题,若全答只计14题得分,共20分.

11.  35             12.            13. 

14.                15.    

三、解答题:共80分.

16题(本题满分13分)

解:(1)要使f(x)有意义,必须,即

得f(x)的定义域为………………………………7分

  (2)因f(x)的定义域为,关于原点不对称,所以

f(x)为非奇非偶函数. ……………………………………………13分

17题(本题满分13分)

解:(1)当且仅当时,方程组有唯一解.因的可能情况为三种情况………………………………3分

        而先后两次投掷骰子的总事件数是36种,所以方程组有唯一解的概率

        ……………………………………………………………………6分

(2)因为方程组只有正数解,所以两直线的交点在第一象限,由它们的图像可知

          ………………………………………………………………9分

解得(a,b)可以是(1,4),(1,5),(1,6),(2,1),(2,2),(3,1),(3,2),(4,1),(4,2),(5,1),(5,2),(6,1),(6,2),所以方程组只有正数解的概率………………………………………………………………………13分

 

18题(本题满分14分)

(1)    证明:由题设知,FG=GA,FH=HD

             所以GH.

             又BC,故GHBC

             所以四边形BCHG是平等四边形。……………………4分

(2)    C、D、F、E四点共面。理由如下:

由BE,G是FA的中点知,

BEGF,所以EF//BG。……………………6分

由(1)知BG//CH,故EF//CH,故F、E、C、H共面,又点D在直线FH上,

所以C、D、F、E四点共面。……………………8分

(3)    证明:连结EG,由AB=BE,BEAG,及,知ABEG是正方形,

             故BG⊥EA。由题设知,FA、AD、AB两两垂直,故AD⊥平面FABE,因此AD⊥BG,又EA∩AD=A,所以BG⊥平面ADE。

             由(1)知,CH//BG,所以CH⊥平面ADE,由(2)知H平面CDE,故CH平面CDE,得平面ADE⊥平面CDE。……………………14分

 

19题(本题满分14分)

解:(1)由已知得,解得:……………………4分

所求椭圆方程为………………………………………………6分

(2)因点即A(3,0),设直线PQ方程为………………8分

则由方程组,消去y得:

设点……………………11分

,得

,代入上式得

,故

解得:,所求直线PQ方程为……………………14分

20题(本题满分14分)

解:(1)函数f(x)的定义域为…………2分

①当时,>0,f(x)在上递增.………………………………4分

②当时,令解得:

,因(舍去),故在<0,f(x)递减;在上,>0,f(x)递增.……………8分

(2)由(1)知内递减,在内递增.

……………………………………11分

,又因

,得………………14分

21题(本题满分12分)

解:(1)由,可得

………………………………3分

所以是首项为0,公差为1的等差数列.

所以……………………6分

(2)解:设……①

……②

时,①②得

…………9分

这时数列的前n项和

时,,这时数列的前n项和

…………………………………………12分

 

 

 

 


同步练习册答案