题目列表(包括答案和解析)
椭圆=1(a>b>0)与x轴,y轴的正半辆分别交于A,B两点,原点O到直线AB的距离为,该椭圆的离心率为
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的直线l与椭圆交于两个不同的点M,N,求线段MN的垂直平分线在y轴上截距的取值范围.
已知椭圆(a>b>0)的左、右焦点分别为F1、F2,若以F2为圆心,b-c为半径作圆F2,过椭圆上一点P作此圆的切线,切点为T,且|PT|的最小值不小于(a-c).
(1)证明:椭圆上的点到F2的最短距离为a-c;
(2)求椭圆的离心率e的取值范围;
(3)设椭圆的短半轴长为1,圆F2与x轴的右交点为Q,过点Q作斜率为k(k>0)的直线l与椭圆相交于A、B两点,若OA⊥OB,求直线l被圆F2截得的弦长S的最大值.
2 |
x2 |
a2 |
y2 |
b2 |
| ||
3 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com