例1.设P是椭圆不在长轴上的一点.F1.F2是椭圆的焦点.(1)什么情况下.P对F1及F2的张角最大,并求此时张角的余弦值,(2)若∠F1PF2=90°.求椭圆的率心率e的范围 查看更多

 

题目列表(包括答案和解析)

设椭圆(a>b>0)与双曲线有相同的焦点F1(-c,0),F2(c,0)(c>0),P为椭圆上一点,△PF1F2的最大面积等于.过点N(-3,0)且倾角为30°的直线l交椭圆于A、
B两点.
(1)求椭圆的标准方程;
(2)求证:点F1(-c,0)在以线段AB为直径的圆上;
(3)设E、F是直线l上的不同两点,以线段EF为直径的圆过点F1(-c,0),求|EF|的最小值并求出对应的圆方程.

查看答案和解析>>

已知椭圆(a>b>0)的离心率为,以该椭圆上的点和椭圆的左、右焦点F1,F2为顶点的三角形的周长为
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设n是过原点的直线,l是与n垂直相交于P点、与椭圆相交于A,B两点的直线,,是否存在上述直线l使成立?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

已知椭圆(a>b>0)的离心率为,以该椭圆上的点和椭圆的左、右焦点F1,F2为顶点的三角形的周长为
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设n是过原点的直线,l是与n垂直相交于P点、与椭圆相交于A,B两点的直线,,是否存在上述直线l使成立?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

精英家教网设b>0,椭圆方程为
x2
2b2
+
y2
b2
=1
,抛物线方程为x2=8(y-b).如图所示,过点F(0,b+2)作x轴的平行线,与抛物线在第一象限的交点为G,已知抛物线在点G的切线经过椭圆的右焦点F1
(1)求满足条件的椭圆方程和抛物线方程;
(2)设A,B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得△ABP为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).

查看答案和解析>>

已知点A,D分别是椭圆(a>b>0)的左顶点和上顶点,点P是线段AD上的任意一点,点F1,F2分别是椭圆的左、右焦点,且的最大值是1,最小值是
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆的右顶点为B,点S是椭圆上位于x轴上方的动点,直线AS,BS与直线L:x=分别交于M,N两点,求线段MN长度的最小值;
(Ⅲ)当线段MN的长度最小时,在椭圆上是否存在T点,使得△TSB的面积是?若存在,确定点T个数;若不存在,说明理由。

查看答案和解析>>


同步练习册答案