(四)离心率:与椭圆类似.将双曲线焦距与实轴的比值称此双曲线的离心率.e= 查看更多

 

题目列表(包括答案和解析)

我们称离心率的椭圆叫做“黄金椭圆”,若为黄金椭圆,以下四个命题:
(1)长半轴长a,短半轴长b,半焦距c成等比数列.
(2)一个长轴顶点与其不同侧的焦点以及一个短轴顶点构成直角三角形.
(3)以两条通经的4个端点为顶点的四边形为正方形.
(4)P、Q为椭圆上任意两点,M为PQ中点,只要PQ与OM的斜率存在,必有kPQ•kOM的定值.
其中正确命题的序号为   

查看答案和解析>>

我们称离心率数学公式的椭圆叫做“黄金椭圆”,若数学公式为黄金椭圆,以下四个命题:
(1)长半轴长a,短半轴长b,半焦距c成等比数列.
(2)一个长轴顶点与其不同侧的焦点以及一个短轴顶点构成直角三角形.
(3)以两条通经的4个端点为顶点的四边形为正方形.
(4)P、Q为椭圆上任意两点,M为PQ中点,只要PQ与OM的斜率存在,必有kPQ•kOM的定值.
其中正确命题的序号为________.

查看答案和解析>>

(2012•宿州一模)已知斜率为1的直线l与双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
相交于B、D两点,且BD的中点为M(1,3).
(1)求双曲线C的离心率;
(2)若双曲线C的右焦点坐标为(3,0),则以双曲线的焦点为焦点,过直线g:x-y+9=0上一点M作椭圆,要使所作椭圆的长轴最短,点M应在何处?并求出此时的椭圆方程.

查看答案和解析>>

已知双曲线与椭圆
x2
25
+
y2
9
=1
的焦点重合,它们的离心率之和为
14
5
,求双曲线的方程.

查看答案和解析>>

(2007•河东区一模)已知:A、B是椭圆
x2
a2
+
y2
b2
=1(a>b>0)的一条弦,向量
0A
+
OB
 交AB于点M,且向量
OM
=(2,1).以M为焦点,以椭圆的右准线为相应准线的双曲线与直线AB交于点N(4,-1).
(Ⅰ)求椭圆的离心率e1
(Ⅱ)设双曲线的离心率为e2,若e1+e2=f(a),求 f(a) 的解析式,并确定它的定义域.

查看答案和解析>>


同步练习册答案