由此可得,,即线段AB关于x轴对称,因为x轴垂直于AB,且 查看更多

 

题目列表(包括答案和解析)

与圆类似,连接圆锥曲线上两点的线段叫做圆锥曲线的弦.过有心曲线(椭圆、双曲线)中心(即对称中心)的弦叫做有心曲线的直径.对圆x2+y2=r2,由直径所对的圆周角是直角出发,可得:若AB是圆O的直径,M是圆O上异于A、B的一点,且AM,BM均与坐标轴不平行,则kAM•kBM=-1.类比到椭圆
x2
a2
+
y2
b2
=1
,类似结论是
若AB是椭圆
x2
a2
+
y2
b2
=1
的直径,M是椭圆上异于A、B的一点,且AM、BM均与坐标轴不平行,则kAM•kBM=-
b2
a2
若AB是椭圆
x2
a2
+
y2
b2
=1
的直径,M是椭圆上异于A、B的一点,且AM、BM均与坐标轴不平行,则kAM•kBM=-
b2
a2

查看答案和解析>>

(1)由“若ab=ac(a≠0,a,b,c∈R),则b=c”;类比“若为三个向量),则”;

(2)如果,那么

(3)若回归直线方程为1.5x+45,x∈{1,5,7,13,19},则=58.5;

(4)当n为正整数时,函数N(n)表示n的最大奇因数,如N(3)=3,N(10)=5, ,由此可得函数N(n)具有性质:当n为正整数时,N(2n)= N(n),N(2n-1)=2n-1.

上述四个推理中,得出结论正确的是           (写出所有正确结论的序号).

 

查看答案和解析>>

与圆类似,连接圆锥曲线上两点的线段叫做圆锥曲线的弦.过有心曲线(椭圆、双曲线)中心(即对称中心)的弦叫做有心曲线的直径.对圆x2+y2=r2,由直径所对的圆周角是直角出发,可得:若AB是圆O的直径,M是圆O上异于A、B的一点,且AM,BM均与坐标轴不平行,则kAM•kBM=-1.类比到椭圆数学公式,类似结论是________

查看答案和解析>>

与圆类似,连接圆锥曲线上两点的线段叫做圆锥曲线的弦.过有心曲线(椭圆、双曲线)中心(即对称中心)的弦叫做有心曲线的直径.对圆x2+y2=r2,由直径所对的圆周角是直角出发,可得:若AB是圆O的直径,M是圆O上异于A、B的一点,且AM,BM均与坐标轴不平行,则kAM•kBM=-1.类比到椭圆
x2
a2
+
y2
b2
=1
,类似结论是______

查看答案和解析>>

已知正数数列{an }中,a1 =2.若关于x的方程 ()对任意自然数n都有相等的实根.

(1)求a2 ,a3的值;

(2)求证

【解析】(1)中由题意得△,即,进而可得,. 

(2)中由于,所以,因为,所以数列是以为首项,公比为2的等比数列,知数列是以为首项,公比为的等比数列,利用裂项求和得到不等式的证明。

(1)由题意得△,即,进而可得   

(2)由于,所以,因为,所以数列是以为首项,公比为2的等比数列,知数列是以为首项,公比为的等比数列,于是

,

所以

 

查看答案和解析>>


同步练习册答案