解:转化为表示椭圆 查看更多

 

题目列表(包括答案和解析)

某企业为了保护环境,发展低碳经济,在国家科研部门的支持下,进行技术攻关,新上了一项把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y(元)与月处理量z(吨)之间的函数关系可近似的表示为:y=
1
3
x3-80x2+5040x,x∈[120,144)
1
2
x2-200x+80000,x∈[144,500)

且每处理一二氧化碳得到可利用的化工产品价值为200元,若该项目不获利,亏损数额国家将给予补偿.
(I)当x∈[200,300]时,判断该项目能否获利?如果亏损,则国家每月补偿数额的范围是多少?
(Ⅱ)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?

查看答案和解析>>

给出下列命题:
①若f'(x0)=0,则函数f(x)在x=x0处有极值;
②m>0是方程
x2
m
+
y2
4
=1
表示椭圆的充要条件;
③若f(x)=(x2-8)ex,则f(x)的单调递减区间为(-4,2);
④A(1,1)是椭圆
x2
4
+
y2
3
=1
内一定点,F是椭圆的右焦点,则椭圆上存在点P,使得PA+2PF的最小值为3.
其中为真命题的序号是
 

查看答案和解析>>

有下列说法:
(1)0与{0}表示同一个集合;
(2)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};
(3)方程(x-1)2(x-2)=0的所有解的集合可表示为{1,1,2};
(4)集合{x|4<x<5}是有限集.
其中正确的说法是(  )

查看答案和解析>>

已知方程2(λ+4)x2+(λ2-3λ+2)y2=1表示椭圆,则λ的取值范围为
{λ|-4<λ<1或λ>2且λ≠-1且λ≠6}
{λ|-4<λ<1或λ>2且λ≠-1且λ≠6}

查看答案和解析>>

已知二次曲线Ck的方程:
x2
9-k
+
y2
4-k
=1

(1)分别求出方程表示椭圆和双曲线的条件;
(2)若双曲线Ck与直线y=x+1有公共点且实轴最长,求双曲线方程;
(3)m、n为正整数,且m<n,是否存在两条曲线Cm、Cn,其交点P与点F1(-
5
,0),F2(
5
,0)
满足PF1⊥PF2,若存在,求m、n的值;若不存在,说明理由.

查看答案和解析>>


同步练习册答案