∴所以..练习:教材P84----19,15四.回顾总结:空间向量数量积的坐标形式五.布置作业教材P83---P84:12,13,14 查看更多

 

题目列表(包括答案和解析)

阅读理解
(1)教材27页有如下内容:
分别观察三个图象,你看出哪些变化规律

(2)教材是这样定义偶函数的(如图文字)

问题1:辅导班的小王认为 f(x)=x2,x∈[-5,5)是偶函数,理由如下:对于函数定义域内的任意一个x,f(-x)=(-x)2=x2=f(x),所以该函数式偶函数,你认为对吗?为什么?
问题2:奇函数的定义是?

查看答案和解析>>

某鱼塘2009年初有鱼10(万条),每年年终将捕捞当年鱼总量的50%,在第二年年初又将有一部分新鱼放入鱼塘.根据养鱼的科学技术知识,该鱼塘中鱼的总量不能超过19.5(万条)(不考虑鱼的自然繁殖和死亡等因素对鱼总量的影响),所以该鱼塘采取对放入鱼塘的新鱼数进行控制,该鱼塘每年只放入新鱼b(万条).
(I)设第n年年初该鱼塘的鱼总量为an(年初已放入新鱼b(万条),2010年为第一年),求a1及an+1与an间的关系;
(Ⅱ)当b=10时,试问能否有效控制鱼塘总量不超过19.5(万条)?若有效,说明理由;若无效,请指出哪一年初开始鱼塘中鱼的总量超过19.5(万条).

查看答案和解析>>

在二项式定理这节教材中有这样一个性质:Cn0+Cn1+Cn2+Cn3+…Cnn=2n,n∈N
(1)计算1•C30+2•C31+3•C32+4•C33的值方法如下:
设S=1•C30+2•C31+3•C32+4•C33又S=4•C33+3•C32+2•C31+1•C30
相加得2S=5•C30+5•C31+5•C32+5•C33即2S=5•23
所以2S=5•22=20利用类似方法求值:1•C20+2•C21+3•C22,1•C40+2•C41+3•C42+4•C43+5•C44
(2)将(1)的情况推广到一般的结论,并给予证明
(3)设Sn是首项为a1,公比为q的等比数列{an}的前n项的和,求S1Cn0+S2Cn1+S3Cn2+S4Cn3+…+Sn+1Cnn,n∈N.

查看答案和解析>>

如果某年年份的各位数字之和为7,我们称该年为“七巧年”.例如,今年年份2014的各位数字之和为7,所以今年恰为“七巧年”.那么从2000年到2999年中“七巧年”共有(  )
A、24个B、21个C、19个D、18个

查看答案和解析>>

某篮球爱好者,做投篮练习,假设其每次投篮命中的概率是40%,现用1,2,3,4表示投中,用5,6,7,8,9,0表示未投中,这样可以体现投中的概率是40%.因为是投篮三次,所以每三个随机数作为一组.例如:产生20组随机数:812,932,569,683,271,989,730,537,925,907,113,966,191,431,257,393,027,556.那么在连续三次投篮中,恰有两次投中的概率是
0.25
0.25

查看答案和解析>>


同步练习册答案